Skip to main content
Log in

Transfer of Laser Pulses through the Atmosphere into Space in the Presence of Clouds of the Upper and Middle Tiers

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Mathematical models of the atmosphere have been developed for a laser wavelength of 0.532 μm, including the optical characteristics of a crystalline environment for aggregate structures of ice particles. Calculations of the optical radiation transfer from subnanosecond laser pulses of ground stations to high-orbit and low-orbit spacecraft in the presence of clouds of upper and middle tiers are performed. It is shown that the principles of no-demand (one-way) laser ranging can be implemented in the presence of frontal cirrus, cirrostratus, and cirrocumulus clouds, as well as altostratus clouds in the sky with established limitations on optical thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. A. Sadovnikov, V. V. Sumerin, and V. D. Shargorodskii, “One-way laser ranging and its use in increasing the accuracy of the GLONASS frequency–time support,” in International Technical Workshop WPLTN-2012 (St. Petersburg, 2012).

  2. A. S. Zhabin and P. I. Nabokin, “Methods for reaching subnanosecond accuracy in measuring time intervals with the onboard terminal of a one-way laser ranging system,” Elektromagn. Volny Elektron. Sist. 18, 39–42 (2013).

    Google Scholar 

  3. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976; Mir, Moscow, 1979).

  4. A Preliminary Cloudless Standard Atmosphere for Radiation Computation, World Climate Research Program, WCP-112, WMO/TD-24 (WMO, 1986).

  5. F. X. Kneizys, D. S. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shetle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, The MODTRAN No. 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, 1996).

  6. A. Ansmann, M. Tesche, S. Groß, V. Freudenthaler, P. Seifert, A. Hiebsch, and J. Schmidt, “The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany,” Geophys. Res. Lett. 37, 13810 (2010).

    Article  Google Scholar 

  7. B. Gérard, J. L. Déuze, M. Herman, Y. J. Kaufman, P. Lallart, C. Oudard, B. Remer, L. A. Roger, B. Six, and D. Tanre, “Comparisons between POLDER 2 and MODIS/Terra aerosol retrievals over ocean,” J. Geophys. Res. 110, 24211 (2005).

    Article  Google Scholar 

  8. Meeting of JSC experts on aerosols and climate (World Climate Research Program, 1981).

  9. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).

    Article  Google Scholar 

  10. G. M. Krekov and R. F. Rakhimov, Optical Models of Atmospheric Aerosol (SO AN SSSR, Tomsk, 1986) [in Russian].

    Google Scholar 

  11. Deirmendjian, D., Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969; Mir, Moscow, 1971).

  12. A. S. Zverev, Synoptic Meteorology (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  13. Clouds and Cloudy Atmosphere: A Handbook, Ed. by I. P. Mazin and A. Kh. Khrgian (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  14. Laser Monitoring of the Atmosphere, Ed. by E. D. Hinckley (Springer, Berlin, 1976; Mir, Moscow, 1979).

  15. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystalline Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  16. E. M. Feigel’son, Radiative Heat Exchange and Clouds (Gidrometeoizdat, Leningrad, 1970) [in Russian].

    Google Scholar 

  17. Guide to Instruments and Methods of Observation (WMO, Geneva, 2018).

  18. B. A. Baum, D. P. Kratz, P. Yang, et al., “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11767–11780 (2000).

    Article  Google Scholar 

  19. A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, H. Okamoto, and J. Forstner, “Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical- optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 195, 132–140 (2017).

    Article  Google Scholar 

  20. L. V. Kravets, V. N. Marinushkin, and N. D. Smirnov, “Study of cirrus cloud characteristics by a ground-based lidar,” in Radiation Properties of Cirrus Clouds, Ed. by E. M. Feigel’son (Nauka, Moscow, 1989), pp. 87–99 [in Russian].

    Google Scholar 

  21. P. Yang, B.-C. Gao, B. A. Baum, W. Wiscombe, Y. Hu, and S. L. Nasiri, “Sensitivity of cirrus bidirectional reflectance in MODIS bands to vertical inhomogeneity of ice crystal habits and size distributions,” J. Geophys. Res. 106, 17267–17291 (2001).

    Article  Google Scholar 

  22. S. Platnick, M. D. King, S. Ackerman, W. P. Menzel, B. A. Baum, J. Riedi, et al., “The MODIS cloud products: Algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 4, 459–473 (2003).

    Article  Google Scholar 

  23. D. M. Winker, R. H. Couch, and M. P. McCormick, “An overview of LITE: NASA’s lidarinspace technology experiment I,” Proc. IEEE 84, 164–180 (1996).

    Article  Google Scholar 

  24. D. M. Winker, J. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE: Int. Soc. Opt. Eng. 4893, 1–11 (2003).

  25. A. Baran, “On the remote sensing and radiative properties of cirrus,” in Light Scattering Reviews 2, Ed. by A. A. Kokhanovsky (Springer, Berlin, 2007), pp. 59–95.

    Google Scholar 

  26. P. Yang, L. Bi, B. A. Baum, K. N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, “Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 pm,” J. Atmos. Sci. 70, 330–347 (2013).

    Article  Google Scholar 

  27. A. Baran and S. Havemann, “The dependence of retrieved cirrus ice-crystal effective dimension on assumed ice crystal geometry and size-distribution function at solar wavelengths,” Q. J. R. Meteorol. Soc. 130, 2153–2167 (2004).

    Article  Google Scholar 

  28. B. Baum, P. Yang, A. Heymsfield, A. Bansemer, B. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm,” J. Quant. Spectrosc. Radiat. Transfer 146, 123–139 (2014).

    Article  Google Scholar 

  29. A. G. Petrushin, “Intensity of radiation scattered at small angles by oriented ice crystals,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 23 (5), 546–548 (1987).

    Google Scholar 

  30. T. B. Zhuravleva, “Simulation of brightness fields of solar radiation in the presence of optically anisotropic ice-crystal clouds: Algorithm and test results,” Atmos. Oceanic Opt. 34 (2), 140–147 (2020).

    Article  Google Scholar 

  31. I. A. Tokarev, I. A. Rybin, V. P. Busygin, et al., “Characteristics of optical radiation of bolides under cloudiness conditions,” Inzh. Fiz., No. 7, 3–15 (2020).

  32. V. P. Busygin, L. D. Krasnokutskaya, and I. Yu. Kuzmina, “Transfer of lightning optical radiation into space through the cloud layer,” Izv., Atmos. Ocean. Phys. 55 (5), 453–461 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank a reviewer for constructive recommendations that allowed us to significantly improve the text of the paper and are sincerely grateful to V.D. Shargorodsky for proposing the research topic and valuable consultations in the process of work, T.B. Zhuravleva for her help in obtaining the data on the scattering functions and useful discussions on formulating the problem, and L.V. Dobrovolskaya for help in processing the calculation materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Busygin or I. Yu. Kuzmina.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busygin, V.P., Ginzburg, A.S. & Kuzmina, I.Y. Transfer of Laser Pulses through the Atmosphere into Space in the Presence of Clouds of the Upper and Middle Tiers. Izv. Atmos. Ocean. Phys. 57, 594–605 (2021). https://doi.org/10.1134/S0001433821050030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821050030

Keywords:

Navigation