Skip to main content
Log in

Statistical Simulation of Laser Pulse Propagation in Cirrus Clouds Accounting for Multiple Scattering

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

An original statistical model of laser pulse propagation in a scattering medium is considered. The model makes it possible to calculate the power of a lidar signal taking into account scattering effects of any multiplicity. A comparative analysis of the temporal structure of the signal obtained using the proposed model and alternative methods is carried out. The features of the propagation of a laser pulse from a ground-based lidar in continuous cirrus clouds are studied taking into account effects of multiple scattering. The dependence of the multiple scattering background on the optical and microphysical characteristics (extinction coefficient, degree of roughness, size and shape of ice particles) of the cloud and parameters of the lidar receiving system is studied. The simulation results indicate a high sensitivity of the part of the echo signal due to multiply scattered light to variable parameters, which should be taken into account when setting and solving inverse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. E. K. Middleton and A. F. Spilhaus, Meteorological Instruments (University of Toronto, Canada, 1953).

    Google Scholar 

  2. National Aeronautics and Space Administration. www.nasa.gov/missions. Cited September 15, 2022.

  3. Yu. S. Balin and A. A. Tikhomirov, “The history of development and operaion of the first Russian space lidar BALKAN integrated into Mir space station,” Opt. Atmos. Okeana 24 (12), 1078–1087 (2011).

    Google Scholar 

  4. Cloud-Aerosol Transport System (CATS). https:// cats.gsfc.nasa.gov/. Cited September 27, 2022.

  5. D. M. Winker, M. Vaughan, A. Omar, Y. Hu, K. Powell, Z. Liu, W. Hunt, and S. Young, “Overview of the CALIPSO mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26 (11), 2310–2323 (2009).

    Article  ADS  Google Scholar 

  6. GAW Aerosol Lidar Observations Network: GALION. http://alg.umbc.edu/galion/. Cited September 27, 2022.

  7. B. V. Kaul’ and I. V. Samokhvalov, “Multiple scattering noise in lidar measurements of backscattering matrices of crystalline clouds,” Atmos. Ocean. Opt. 12 (5), 385–389 (1999).

    Google Scholar 

  8. K. N. Liou and R. M. Schotland, “Multiple scattering and depolarization from water clouds for a pulsed lidar system,” J. Atmos. Sci. 28 (5), 772–784 (1971).

    Article  ADS  Google Scholar 

  9. E. W. Eloranta and S. T. Shipley, “A solution for multiple scattering,” in Atmospheric Aerosols: Their Formation, Optical Properties and Effects (Spectrum Press, Hampton, 1982), pp. 227–239.

    Google Scholar 

  10. L. R. Bissonnette and D. L. Hutt, “Multiply scattered aerosol lidar returns: Inversion method and comparison with in situ measurements,” Appl. Opt. 34 (30), 6959–6975 (1995).

    Article  ADS  Google Scholar 

  11. G. M. Krekov and M. M. Krekova, “Structure of the spaceborne lidar returns from the upper level clouds. Part II. Optically inhomogeneous clouds,” Atmos. Ocean. Opt. 11 (1), 46–49 (1998).

    Google Scholar 

  12. Elastic Lidar. Theory, Practice, and Analysis Methods, Ed. by V.A. Kovalev and W.E. Eichinger (Wiley-Interscience, Hoboken, 2004)

    Google Scholar 

  13. V. A. Korshunov, “Multiple scattering in cirrus clouds and taking it into account when interpreting lidar measurements in the stratosphere,” Atmos. Ocean. Opt. 35 (2), 151–157 (2022).

    Article  Google Scholar 

  14. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Karlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  15. G. M. Krekov, “Monte Carlo method in problems of atmospheric optics,” Atmos. Ocean. Opt. 20 (9), 757–766 (2007).

    Google Scholar 

  16. E. G. Kablukova and B. A. Kargin, “Efficient discrete stochastic modification for local estimates of the Monte Carlo method for problems of laser sounding of scattering media,” Vychislitel’nye Tekhnologii 17 (3), 70–82 (2012).

    Google Scholar 

  17. V. V. Bryukhanova, I. V. Samokhvalov, A. I. Abramochkin, S. A. Abramochkin, and A. A. Tikhomirov, “Multiply scattered lidar return from water-droplet clouds,” Atmos. Ocean. Opt. 16 (9), 711–720 (2003).

    Google Scholar 

  18. T. V. Russkova, “Monte Carlo simulation of the solar radiation transfer in a cloudy atmosphere with the use of graphic processor and NVIDIA CUDA technology” Atmos. Ocean. Opt. 31 (2), 119–130 (2018).

    Article  Google Scholar 

  19. S. M. Prigarin, ”Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds,” Atmos. Ocean. Opt. 30 (1), 79–83 (2017).

    Article  Google Scholar 

  20. L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, and I. N. Polonsky, “LIDAR multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).

    Article  ADS  Google Scholar 

  21. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier Publishing Company, 1969).

    Google Scholar 

  22. L. R. Bissonnette, “Multiple scattering of narrow light beams in aerosols,” Appl. Phys. B 60, 315–323 (1995).

    Article  ADS  Google Scholar 

  23. C. Flesia and P. Schwendimann, “Analytical multiple scattering extension of the Mie theory,” Appl. Phys. B 56, 157–163 (1993).

    Article  ADS  Google Scholar 

  24. E. P. Zege, I. L. Katsev, and I. Polonsky, “Analytical solution to LIDAR return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995).

    Article  ADS  Google Scholar 

  25. D. Winker and L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS,” Appl. Phys. B 60, 341–344 (1995).

    Article  ADS  Google Scholar 

  26. P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, “Monte-Carlo calculations of LIDAR returns: Procedure and results,” Appl. Phys. B 60, 325–329 (1995).

    Article  ADS  Google Scholar 

  27. B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm,” J. Quant. Spectrosc. Radiant. Transfer 146, 123–139 (2014).

    Article  ADS  Google Scholar 

  28. P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44 (26), 5512–5523 (2005).

    Article  ADS  Google Scholar 

  29. A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, V. A. Shishko, and D. N. Timofeev, Light Scattering from Ice Crystals in the Physical Optics Approximation (Publishing House of SB RAS, Novosibirsk, 2020) [in Russian].

    Google Scholar 

  30. C. Zhou and P. Yang, “Backscattering peak of ice cloud particles,” Opt. Express 23 (9), 11995–12003 (2015).

    Article  ADS  Google Scholar 

  31. C. N. R. Platt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” Atmos. Sci 38, 156–167 (1981).

    Article  ADS  Google Scholar 

  32. P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. X. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part I. Single scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Remote Sens. 46, 1940–1947 (2008).

    Article  ADS  Google Scholar 

  33. V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, D. N. Timofeev, and A. G. Borovoi, “Coherent and incoherent backscattering by a single large particle of irregular shape,” Opt. Express 27 (23), 32984–32993 (2019).

    Article  ADS  Google Scholar 

  34. A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning,” Atmos. Ocean. Opt. 29 (3), 252–262 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.M. Prigarin for the possibility to test the algorithms by the LIDAR-1.exe software.

Funding

This study was supported by the Russian Science Foundation (project no. 22-27-00719).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. V. Russkova or V. A. Shishko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russkova, T.V., Shishko, V.A. Statistical Simulation of Laser Pulse Propagation in Cirrus Clouds Accounting for Multiple Scattering. Atmos Ocean Opt 36, 384–393 (2023). https://doi.org/10.1134/S1024856023040164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023040164

Keywords:

Navigation