Skip to main content
Log in

Lagrange Studies of Anomalously Stable Arctic Stratospheric Vortex Observed in Winter 2019–2020

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We present the results of applying the Lagrangian methods to study the fine dynamic structure of the stratospheric polar vortex in the winter–spring of 2019–2020. Characteristics of the vortex structure for this winter are compared with those of a strong polar vortex and the winter of 2018–2019, when the vortex was weak. Due to the low activity of planetary waves, the polar vortex in 2019–2020 remained stable until the end of April, which created the conditions for record ozone destruction in the Arctic. We present variations of the horizontal dynamic structure obtained using reverse domain filling (RDF) and the vortex strength represented as an M function depending on time and altitude. Variations in ozone and thermodynamic parameters averaged over the ensemble of trajectories inside the vortex using the ERA5 reanalysis data are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. N. Savenkova, A. Yu. Kanukhina, A. I. Pogoreltsev, and E. G. Merzlyakov, “Variability of the springtime transition date and planetary waves in the stratosphere,” J. Atmos. Sol.-Terr. Phys. 90–91, 1–8 (2012).

    Article  Google Scholar 

  2. P. N. Vargin, S. V. Kostrykin, E. V. Rakushina, E. M. Volodin, and A. I. Pogoreltsev, “Study of the variability of spring breakup dates and Arctic stratospheric polar vortex parameters from simulation and reanalysis data,” Izv., Atmos. Ocean. Phys. 56 (5), 458–469 (2020).

    Article  Google Scholar 

  3. A. Butler, A. Charlton-Perez, D. Domeisen, I. Simpson, and J. Sjoberg, “Predictability of Northern Hemisphere final stratospheric warmings and their surface impacts,” Geophys. Res. Lett. 46, 10578–10588 (2019).

    Article  Google Scholar 

  4. D. W. Waugh and L. M. Polvani, “Stratospheric polar vortices,” in The Stratosphere: Dynamics, Transport, and Chemistry (Am. Geophys. Union, 2010), pp. 43–57.

    Google Scholar 

  5. P. N. Vargin, A. N. Luk’yanov, and B. M. Kiryushov, “Dynamic Processes in the Arctic stratosphere in the winter of 2018/2019,” Russ. Meteorol. Hydrol. 45 (6), 387–397 (2020.

    Article  Google Scholar 

  6. S. Solomon, J. Haskins, D. Ivy, and F. Min, “Fundamental differences between Arctic and Antarctic ozone depletion,” Proc. Natl. Acad. Sci. U.S.A. 111 (17), 6220–6225.

  7. Z. Lawrence, J. Perlwitz, A. Butler, G. Manney, P. Newman, S. Lee, and E. Nash, “The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record breaking Arctic oscillation and ozone loss,” J. Geophys. Res. 125 (22), e2020JD033271 (2020).

  8. R. T. Sutton, H. MacLean, R. Swinbank, A. O’Neill, and F. W. Taylor, “High-resolution stratospheric tracer fields estimated from satellite observations using Lagrangian trajectory calculations,” J. Atmos. Sci. 51, 2995–3005 (1994).

    Article  Google Scholar 

  9. P. Chen, “The permeability of the Antarctic vortex edge,” J. Geophys. Res. 99, 20563–20571 (1994).

    Article  Google Scholar 

  10. B. Joseph and B. Legras, “Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex,” J. Atmos. Sci. 59 (7), 1198–1212 (2002).

    Article  Google Scholar 

  11. E. R. Nash, P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, “An objective determination of the polar vortex using Ertel’s potential vorticity,” J. Geophys. Res. 101, 9471–9478 (1996).

    Article  Google Scholar 

  12. A. de la Camara, A. M. Mancho, K. Ide, E. Serrano, and C. R. Mechoso, “Routes of transport across the Antarctic polar vortex in the southern spring,” J. Atmos. Sci. 69 (2), 741–752 (2012).

    Article  Google Scholar 

  13. M. L. Smith and A. J. McDonald, “A quantitative measure of polar vortex strength using the function M,” J. Geophys. Res.: Atmos. 119, 5966–5985 (2014).

    Article  Google Scholar 

  14. J. A. Jimenez Madrid and A. M. Mancho, “Distinguished trajectories in time dependent vector fields,” Chaos 19 (013), 111 (2009).

    Google Scholar 

  15. C. Mendoza, and A. M. Mancho, “Hidden geometry of ocean flows,” Phys. Rev. Lett. 105 (3), 501 (2010).

    Google Scholar 

  16. C. Mendoza and A. M. Mancho, “The Lagrangian description of aperiodic flows: A case study of the Kuroshio Current,” Nonlinear Processes Geophys. 19 (4), 449–472 (2012).

    Article  Google Scholar 

  17. M. Baldwin and T. Dunkerton, “Stratospheric harbingers of anomalous weather regimes,” Science 294, 581–584 (2001).

    Article  Google Scholar 

  18. E. Kolstad, T. Breiteig, and A. Scaife, “The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere,” Q. J. R. Meteorol. Soc. 136, 886–893 (2010).

    Article  Google Scholar 

  19. J. Huang and W. Tian, “Eurasian cold air outbreaks under different Arctic stratospheric polar vortex strength,” J. Atmos. Sci. 76, 1245–1264 (2019).

    Article  Google Scholar 

  20. A. Lukyanov, H. Nakane, and V. Yushkov, “Lagrangian estimation of ozone loss in the core and edge region of the Arctic polar vortex 1995/1995: Model results and observations,” J. Atmos. Chem. 44, 191–210 (2003).

    Article  Google Scholar 

  21. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Hornyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. D. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janiskova, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thépaut, The ERA5 Global Reanalysis, Q. J. Roy, Meteor. Soc. 146, 1999–2049 (2020).

  22. S. H. Lee and A. H. Butler, “The 2018–2019 Arctic stratospheric polar vortex,” Weather 75, 52–57 (2020).

    Article  Google Scholar 

  23. N. D. Tsvetkova, P. N. Vargin, A. N. Luk’yanov, B. M. Kiryushov, V. A. Yushkov, and V. U. Khattatov, “Study of the chemical destruction of ozone and dynamical processes in the Arctic stratosphere in winter 2019–2020,” Russ. Meteorol. Hydrol. (2021) (in press).

  24. S. Smyshlyaev, P. Vargin, A. Lukyanov, N. Tsvetkova, and M. Motsakov, “Dynamical and chemical processes contributing to ozone loss in exceptional Arctic stratosphere winter/spring of 2020,” Atmos. Chem. Phys. Discuss. (2021) (in review).

  25. G. L. Manney, N. J. Livesey, M. L. Santee, L. Froidevaux, A. Lambert, Z. D. Lawrence, L. F. Millan, J. L. Neu, W. G. Read, M. J. Schwartz, and R. A. Fuller, “Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters,” Geophys. Res. Lett. 47, e2020GL089063 (2020).

  26. I. Wohltmann, P. Gathen, R. Lehmann, M. Maturilli, H. Deckelmann, G. L. Manney, J. Davies, D. Tarasick, N. Jepsen, R. Kivi, N. Lyall, and M. Rex, “Near-complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020,” Geophys. Res. Lett. 47, e2020GL089547 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Lukyanov, P. N. Vargin or V. A. Yushkov.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanov, A.N., Vargin, P.N. & Yushkov, V.A. Lagrange Studies of Anomalously Stable Arctic Stratospheric Vortex Observed in Winter 2019–2020. Izv. Atmos. Ocean. Phys. 57, 247–253 (2021). https://doi.org/10.1134/S0001433821030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821030075

Keywords:

Navigation