Skip to main content
Log in

Arctic Polar Vortex Dynamics According to the Delineation Method Using Geopotential

  • COMMUNICATIONS
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We compare the main characteristics of the Arctic polar vortex obtained from the NASA GSFC data (zonal mean wind at 60° N, mean temperature in the region 60°–90° N) and by the vortex delineation method using the geopotential (mean wind speed along the vortex edge, mean temperature inside the vortex) on the example of three largest Arctic ozone depletion events and on average over 1979‒2021. The mean wind speed along the vortex edge according to the delineation method is on average two times higher than the zonal mean wind at 60° N and is 37.3 ± 5.6 and 58.9 ± 13.1 m/s in January at the 50- and 10-hPa levels, respectively. The mean temperature inside the vortex according to the delineation method is on average 5°C lower than the mean temperature in the region 60°‒90° N in the lower stratosphere. The quantitative characteristics obtained expand the understanding of the Arctic polar vortex dynamics in the lower stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. W. Waugh and W. J. Randel, “Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics,” J. Atmos. Sci. 56 (11), 1594–1613 (1999).

    Article  ADS  Google Scholar 

  2. D. W. Waugh, A. H. Sobel, and L. M. Polvani, “What is the polar vortex and how does it influence weather?,” Bull. Amer. Meteor. Soc. 98 (1), 37–44 (2017).

    Article  ADS  Google Scholar 

  3. X. Zhang and J. M. Forbes, “Lunar tide in the thermosphere and weakening of the northern polar vortex,” Geophys. Rev. Lett. 41 (23), 8201–8207 (2014).

    Article  ADS  Google Scholar 

  4. V. Matthias, A. Dornbrack, and G. Stober, “The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016,” Geophys. Rev. Lett. 43 (23), 12 287–12 294 (2016).

    Article  Google Scholar 

  5. H. Akiyoshi, L. B. Zhou, Y. Yamashita, K. Sakamoto, M. Yoshiki, T. Nagashima, M. Takahashi, J. Kurokawa, M. Takigawa, and T. Imamura, “A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios,” J. Geophys. Res. 114 (3), D03103 (2009).

    Article  ADS  Google Scholar 

  6. V. V. Zuev and E. Savelieva, “The cause of the spring strengthening of the Antarctic polar vortex,” Dynam. Atmos. Oceans 87, 101097 (2019).

    Article  Google Scholar 

  7. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. de Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Holm, M. Janiskova, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.‑N. Thepaut, “The ERA5 global reanalysis,” Q. J. Roy. Meteor. Soc. 146 (729), 1–51 (2020).

    Article  Google Scholar 

  8. V. V. Zuev, E. S. Savelieva, and A. V. Pavlinsky, “Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009,” Problemy Arktiki Antarktiki 67 (2), 134–146 (2021).

    Article  Google Scholar 

  9. V. V. Zuev and E. Savelieva, “Antarctic polar vortex dynamics during spring 2002,” J. Earth Syst. Sci. 131 (2), 119 (2022).

    Article  ADS  Google Scholar 

  10. V. V. Zuev and E. Savelieva, “Antarctic polar vortex dynamics depending on wind speed along the vortex edge,” Pure Appl. Geophys. 179 (6-7), 2609–2616 (2022).

    Article  ADS  Google Scholar 

  11. R. Gelaro, W. McCarty, M. J. Suarez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. M. Silva, W. Gu, G.-K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao, “The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2),” J. Clim. 30 (14), 5419–5454 (2017).

    Article  ADS  Google Scholar 

  12. P. A. Newman, J. F. Gleason, R. D. McPeters, and R. S. Stolarski, “Anomalously low ozone over the Arctic,” Geophys. Rev. Lett. 24 (22), 2689–2692 (1997).

    Article  ADS  Google Scholar 

  13. J. Kuttippurath, S. Godin-Beekmann, F. Lefevre, G. Nikulin, M. L. Santee, and L. Froidevaux, “Record-breaking ozone loss in the Arctic winter 2010/2011: Comparison with 1996/1997,” Atmos. Chem. Phys. 12 (15), 7073–7085 (2012).

    Article  ADS  Google Scholar 

  14. G. L. Manney, M. L. Santee, M. Rex, N. J. Livesey, M. C. Pitts, P. Veefkind, E. R. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. R. Poole, M. R. Schoeberl, D. P. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P. F. Levelt, A. Makshtas, C. T. McElroy, H. Nakajima, M. C. Parrondo, D. W. Tarasick, P. Gathen, K. A. Walker, and N. S. Zinoviev, “Unprecedented Arctic ozone loss in 2011,” Nature 478 (7370), 469–475 (2011).

    Article  ADS  Google Scholar 

  15. J. Rao and C. I. Garfinkel, “The strong stratospheric polar vortex in March 2020 in sub-seasonal to seasonal models: Implications for empirical prediction of the low Arctic total ozone extreme,” Geophys. Rev. Lett. 126 (9) (2021).

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (theme no. 121031300156-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Zuev, E. S. Savelieva or E. A. Sidorovski.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, V.V., Savelieva, E.S. & Sidorovski, E.A. Arctic Polar Vortex Dynamics According to the Delineation Method Using Geopotential. Atmos Ocean Opt 36, 590–593 (2023). https://doi.org/10.1134/S1024856023050184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023050184

Keywords:

Navigation