Skip to main content
Log in

Interaction of Mesoscale and Submesoscale Eddies in the Sea of Okhotsk Based on Satellite Data

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING SEAS AND OCEANS FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We have investigated the interaction between the mesoscale and submesoscale eddies in the deep Kuril Basin of the Sea of Okhotsk. An analysis of the long-term series of satellite altimetry observations (2000–2011) has demonstrated that the circulation in the Kuril Basin is determined by quasi-stationary mesoscale anticyclonic eddies. Based on the QuikSCAT SeaWind scatterometer satellite data, a negative vorticity wind-stress field exists over the deep part of the Sea of Okhotsk in the warm season, which generates anticyclonic circulation composed of mesoscale eddies. An analysis of the satellite infrared images reveals that submesoscale processes determine the interaction of mesoscale eddies with the waters of the zone of intense tidal mixing on the shelf of the Kuril Islands. Submesoscale cyclonic eddies are formed at the fronts of tidal mixing and near the Bussol Strait located in the central part of the Kuril Islands. Applications of Lagrangian analysis have shown that submesoscale eddies move at the periphery of the northern mesoscale eddy within the advective streamer limited by the transport barriers. The formation and destruction of submesoscale eddies caused by horizontal mixing leads to the injection of cold water rich in nutrients from the zone of intense tidal mixing to the deep Kuril Basin. In the summer period, high concentrations of chlorophyll-a are observed in the upper layer of the northeastern part of the Sea of Okhotsk due to the interaction between submesoscale and mesoscale eddies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Andreev, A.G. and Zhabin, I.A., Mesoscale eddies and interannual variations of Chlorophyll-a content in the Sea of Okhotsk, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2012, no. 6, pp. 65–71.

  2. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., and Vulpiani, A., Predictability in the large: An extension of the concept of Lyapunov exponent, J. Phys. Math. Gen., 1997, vol. 30, pp. 1–26.

    Article  Google Scholar 

  3. Badin, G., Williams, R.G., Holt, T.T., and Fernand, L.J., Are mesoscale eddies in shelf seas formed by baroclinic instability of tidal fronts?, J. Geophys. Res., 2009, vol. 114, C10021, pp. 1–18. https://doi.org/10.1029/2009/JC005340

    Article  Google Scholar 

  4. Bulatov, N.V., Kurennaya, L.A., Muktepavel, L.P., Aleksanina, M.G., and Gerbek, E.E., Eddy water structure in the southern Okhotsk Sea and its seasonal variability (results of satellite monitoring), Oceanology (Engl. Transl.), 1999, vol. 39, no. 1, pp. 29–37.

  5. Callendar, W., Klumak, J.M., and Foreman, G.G., Tidal generation of large sub-mesoscale dipoles, Ocean Sci., 2011, vol. 7, pp. 487–502.

    Article  Google Scholar 

  6. Dubina, V.A., Faiman, P.A., Zhabin, I.A., Ponomarev, V.I., and Kuzlyakina, Yu.A., The Sea of Okhotsk currents according to satellite data and numerical simulation results, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 1, pp. 206–212.

    Google Scholar 

  7. Gidrometeorologiya i gidrokhimiya morei (Marine Hydrometeorology and Hydrochemistry), vol. 9: Okhotskoe more (The Sea of Okhotsk), book 1: Gidrometeorologicheskie usloviya (Hydrometeorological Conditions), St. Petersburg, Gidrometeoizdat, 1998.

  8. Ivanov, A.Yu. and Ginzburg, A.I., Ocean eddies in synthetic aperture radar images, Proc. Indian Academy of Sciences,Earth and Planetary Sci., 2002, vol. 111, no. 3, pp. 281–295.

    Google Scholar 

  9. Johannessen, J.A., Shuchman, R.A., Digranes, G., Luzenga, D.R., Wackerman, C., Johannessen, O.M., and Vachon, P.W., Coastal ocean fronts and eddies imaged with ERS-1 synthetic aperture radar, J. Geophys. Res., 1996, vol. 111, pp. 6651–6668.

    Article  Google Scholar 

  10. Karimova, S.S., Statistical analysis of sub-mesoscale eddies of Baltic, Black, and Caspian seas according to satellite radar data, Issled. Zemli Kosmosa, 2012, no. 3, pp. 31–47.

  11. Khen, G.V. and Muktepaveln L.P., Study of eddies in the southwestern part og the Sea of Okhotsk according to data from Meteor series of satellites, Issled. Zemli Kosmosa, 1995, no. 4, pp. 76–79.

  12. Lehahn, Y., d’Ovidio, F., Levy, M., and Heifetz, E., Stirring of the Northeast Atlantic spring bloom: A Lagrangian analysis based on multi-satellite data, J. Geophys. Res., 2007, vol. 112, C08005. https://doi.org/10.1029/2006JC003927

    Article  Google Scholar 

  13. Mann, K.H. and Lazier, J.R.N., Dynamics of Marine Ecosystems: Biological–Physical Interactions in the Oceans, Oxford: Blackwell, 2005.

    Book  Google Scholar 

  14. Mormorino, A., Evaluation of tidal error in altimetry data in the Asian marginal seas, J. Oceanogr., 2009, vol. 65, pp. 477–485.

    Article  Google Scholar 

  15. Nakamura, T., Matthews, J.P., Awaji, T., and Mitsudera, H., Sub-mesoscale eddies near the Kuril Straits: Asymmetric generation of clockwise and counterclockwise eddies by barotropic tidal flow, J. Geophys. Res., 2012, vol. 117, no. C12. https://doi.org/10.1029/2011JC007754

    Article  Google Scholar 

  16. Ohshima, K.I., Simizu, D., Itoh, M., Mizuta, G., Fukamachi, Y., Riser, S.C., and Wakatsuchi, M., Sverdrup balance and the cyclonic gyre in the Sea of Okhotsk, J. Phys. Oceanogr., 2004, vol. 34, no. 2, pp. 513–525.

    Article  Google Scholar 

  17. d’Ovidio, F., Fernández, V., Hernández-García, E., and López, C., Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents, Geophys. Res. Lett., 2004, vol. 31, no. 17. https://doi.org/10.1029/2004GL020328

    Article  Google Scholar 

  18. Prants, S.V., Budyanskii, M.V., and Uleiskii, M.Yu., Order in the chaos of oceanic currents, Priroda, 2013, no. 3, pp. 3–13.

  19. Rogachev, K.A. and Verkhunov, A.V., Circulation and water mass structure in the southern Okhotsk Sea, as observed in summer 1994, PICES Scientific Rep., 1996, no. 6, pp. 144–149.

  20. Samelson, R.M., Lagrangian motion, coherent structures, and lines of persistent material strain, Annu. Rev. Mar. Sci., 2013, vol. 5, pp. 137–163.

    Article  Google Scholar 

  21. Signell, R.P. and Geyer, W.R., Transient eddy formation around headlands, J. Geophys. Res., 1991, vol. 96, no. C2, pp. 2561–2575.

    Article  Google Scholar 

  22. Talley, L.D. and Nagata, Y., The Okhotsk Sea and Oyashio region, PICES Sci. Rep., 1995, no. 2, p. 227.

  23. Tanaka, Y., Hibiya, T., Niwa, Y., and Iwamae, N., Numerical study of K1 internal tides in the Kuril Straits, J. Geophys. Res., 2010, vol. 115, no. C9. https://doi.org/10.1029/2009JC005903

  24. Thomas, L.N., Tandon, A., and Mahadevan, A., Submesoscale processes and dynamics, Ocean Modeling in an Eddying Regime, Washington, D.C.: Am. Geophys. Union, 2008, vol. 177, pp. 17–38. https://doi.org/10.1029/177GM04

    Google Scholar 

  25. Wakatsuchi, M. and Martin, S., Water circulation in the Kuril Basin of the Okhotsk Sea and its relation to eddy formation, J. Oceanogr. Soc. Jpn., 1991, vol. 47, pp. 152–168.

    Article  Google Scholar 

  26. Zhabin, I.A., Ventilation of the upper portion of the intermediate water in the Okhotsk Sea, PICESSci. Rep., 1999, no. 12, pp. 159–171.

  27. Zhabin, I.A. and Luk’yanova, N.B., Interaction of anticyclonic eddies with the Soya current in the southern part of the Sea Okhotsk according to satellite observation data, Issled. Zemli Kosmosa, 2011, no. 1, pp. 86–90.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zhabin.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhabin, I.A., Andreev, A.G. Interaction of Mesoscale and Submesoscale Eddies in the Sea of Okhotsk Based on Satellite Data. Izv. Atmos. Ocean. Phys. 55, 1114–1124 (2019). https://doi.org/10.1134/S0001433819090573

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090573

Keywords:

Navigation