Skip to main content
Log in

Evaluation of tidal error in altimetry data in the Asian marginal seas

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The magnitude and geographical distribution of the error in the Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO) altimetry data associated with tidal correction around Asian marginal seas has been revealed. The errors were evaluated by harmonic analysis of the AVISO corrected sea surface heights data (CorSSH). Errors of more than 15 cm of tidal correction were recognized in the western and northern parts of the Yellow Sea, Celebes Sea, Kuril Islands, and the northwestern part of the Okhotsk Sea. It was found that the CorSSH and sea level anomaly (SLA) data downloaded from the AVISO are not available for direct use in those marginal seas. To reduce the tidal correction error, the harmonic constants calculated from the latest tide model and regional tide model were applied as the tidal correction of the Altimetry data. The tidal errors in the Yellow Sea and the northwestern part of the Okhotsk Sea were reduced by approximately 20 cm and 10 cm, respectively. Root mean square differences between the harmonic constants derived from tide models and those derived from altimetry data were calculated. The root mean square differences were large in the Yellow and the Okhotsk Seas. Root sum squares for four principal tidal constituents in the Yellow and East China Seas and Okhotsk Sea were 7.72 cm and 8.36 cm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O. B. (1994): Ocean tides in the northern North Atlantic and adjacent seas from ERS 1 altimetry. J. Geophys. Res., 99(C11), 22,557–22,573.

    Article  Google Scholar 

  • AVISO (2005): DT CorSSH and DT SLA Product Handbook. AVISO, CLS-DOS-NT-05-097, Issue 1, rev 1.

  • Benada, R. (1993): PO. DAAC MERGED GDR (TOPEX/Poseidon) Users handbook, Rep. JPL D-11997, Jet Propul. Lab., Pasadena, Calif.

  • Bouffard, J., S. Vignudelli, P. Cipollini and Y. Menard (2008): Exploiting the potential of an improved multimission altimetric data set over the coastal ocean. Geophys. Res. Lett., 35, L10601, doi: 10.1029/2008GL033488.

    Article  Google Scholar 

  • Cheney, R. E., J. G. Marsh and B. D. Beckley (1983): Global mesoscale variability from collinear tracks of Seasat altimeter data. J. Geophys. Res., 88(C7), 4343–4354.

    Article  Google Scholar 

  • Choi, B. J., D. B. Haidvogel and Y. K. Cho (2004): Nonseasonal sea level variations in the Japan/East Sea from satellite altimeter data. J. Geophys. Res., 109, C12028, doi:10.1029/2004JC002387.

    Article  Google Scholar 

  • Eanes, R. J. and S. V. Bettadpur (1994): Ocean tides from two years of TOPEX/POSEIDON altimetry (abstract). EOS Trans. AGU, 75(44), Fall Meet. Suppl., 61.

    Google Scholar 

  • Ebuchi, N. (2006): Seasonal and interannual variations in the East Sakhalin Current revealed by TOPEX/POSEIDON altimeter data. J. Oceanogr., 62(2), 171–183.

    Article  Google Scholar 

  • Fu, L.-L. (1983): Recent progress in the application of satellite altimetry to observing the mesoscale variability and general circulation of the Ocean. Rev. Geophys. Space Phys., 21, 1657–1666.

    Article  Google Scholar 

  • Fu, L.-L. and R. E. Cheney (1995): Applications of satellite altimetry to ocean circulation studies: 1987–1994. Rev. Geophys., 32, Supplement, 213–223.

    Article  Google Scholar 

  • Fu, L.-L., E. J. Christensen, C. A. Yamarone, Jr., M. Lefebvre, Y. Menard, M. Dorrer and P. Escudier (1994): TOPEX/ POSEIDON mission overview. J. Geophys. Res., 99(C12), 24,369–24,381.

    Article  Google Scholar 

  • Isoguchi, O. and H. Kawamura (2006): Seasonal to interannual variations of the western boundary current of the subarctic North Pacific by a combination of the altimeter and tide gauge sea levels. J. Geophys. Res., 111, C04013, doi:10.1029/2005JC003080.

    Google Scholar 

  • Keister, E. J. and P. T. Strub (2008): Spatial and interannual variability in mesoscale circulation in the northern California Current System. J. Geophys. Res., 113, C04015, doi:10.1029/2007JC004256.

    Article  Google Scholar 

  • Le Provost, C., J. M. Molines, F. Lyard, M. L. Genco and F. Rabilloud (1995): A global ocean tide prediction model based on the hydrodynamic finite element solutions FES94.1 improved by assimilation of the CSR2.0 T/P solutions (abstract). Paper presented at symposium Operational Oceanography and Satellite Observation, Biarrits, France, 1995.

  • Lefèvre, F., C. Le Provost and F. H. Lyard (2000): How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea. J. Geophys. Res., 105(C4), 8707–8725.

    Article  Google Scholar 

  • Matsumoto, K., M. Ooe, T. Sato and J. Segawa (1995): Ocean tide model obtained from TOPEX/POSEIDON altimetry data. J. Geophys. Res., 100(C12), 25,319–25,330.

    Article  Google Scholar 

  • Matsumoto, K., T. Takanezawa and M. Ooe (2000): Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr., 56, 567–581.

    Article  Google Scholar 

  • Morimoto, A., T. Yanagi and A. Kaneko (2000a): Tidal correction of altimetric data in the Japan Sea. J. Oceanogr., 56, 31–41.

    Article  Google Scholar 

  • Morimoto, A., T. Yanagi and A. Kaneko (2000b): Eddy field in the Japan Sea derived from satellite altimetric data. J. Oceanogr., 56, 449–462.

    Article  Google Scholar 

  • Nishida, H. (1980): Improved tidal charts for the western part of the North Pacific Ocean. Report of Hydraulic Researches, 15, 55–70.

    Google Scholar 

  • Ray, R. D. (1999): A global ocean tide model from TOPEX/ POSEIDON altimetry: GOT99.2. NASA Tech. Memo., 209478.

  • Schlax, M. G. and D. B. Chelton (1994): Aliased tidal errors in TOPEX/POSEIDON sea surface height data. J. Geophys. Res., 99, 24,761–24,776.

    Article  Google Scholar 

  • Shum, C. K., P. L. Woodworth, O. B. Andersen, G. D. Egbert, O. Francis, C. King, S. M. Klosko, C. Le Provost, X. Li, J.-M. Molines, M. E. Parke, R. D. Ray, M. G. Schlax, D. Stammer, C. C. Tierney, P. Vincent and C. I. Wunsch (1997): Accuracy assessment of recent ocean tide models. J. Geophys. Res., 102, 25,173–25,194.

    Article  Google Scholar 

  • Smith, A. J. E., B. A. C. Ambrosius, K. F. Wakker, P. L. Woodworth and J. M. Vassie (1998): Ocean tides from harmonic and response analysis on TOPEX/POSEIDON altimetry. Adv. Space Res., 22(11), 1541–1548.

    Article  Google Scholar 

  • Uchida, H. and S. Imawaki (2003): Eulerian mean surface velocity field derived by combining drifter and satellite altimeter data. Geophys. Res. Lett., 30(5), 1229.

    Article  Google Scholar 

  • Volkov, D. L., G. Larnicol and J. Dorandeu (2007): Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res., 112, C06020, doi:10.1029/2006JC003765.

    Article  Google Scholar 

  • Yanagi, T., A. Morimoto and K. Ichikawa (1997a): Co-tidal and co-range charts for the East China Sea and the Yellow Sea derived from satellite altimetric data. J. Oceanogr., 53, 303–309.

    Google Scholar 

  • Yanagi, T., A. Morimoto and K. Ichikawa (1997b): Seasonal variation in surface circulation of the East China Sea and the Yellow Sea derived from satellite altimetric data. Cont. Shelf Res., 17, 655–664.

    Article  Google Scholar 

  • Yi, Y., K. Matsumoto, C. K. Shum, Y. Wang and R. Mautz (2006): Advances in Southern Ocean tide modeling. J. Geodyn., 41, 128–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Morimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morimoto, A. Evaluation of tidal error in altimetry data in the Asian marginal seas. J Oceanogr 65, 477–485 (2009). https://doi.org/10.1007/s10872-009-0041-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0041-9

Keywords

Navigation