Skip to main content
Log in

Spectroscopic Multirelaxation Dielectric Model of Thawed and Frozen Arctic Soils Considering the Dependence on Temperature and Organic Matter Content

  • PHYSICAL FOUNDATION OF EARTH OBSERVATION AND REMOTE SENSING
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A temperature spectroscopic dielectric model of moist soils developed on the basis of measurements of six samples of thawed and frozen Arctic soils with different contents of organic matter, from 30 to 90%, is presented. This model allows predicting complex permittivity values of moist soil that are in a good agreement with dielectric measurements. It is applicable in a frequency range from 0.05 to 15 GHz, a temperature range from ‒30° to +25°C, and a moisture range from 0.009 to 1.001 g/g. It can be recommended for use in remote sensing algorithms of moisture and temperature of soil using space radiometric and radar data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bircher, S., Balling, J.E., Skou, N., and Kerr, Y.H., Validation of SMOS brightness temperatures during the HOBE airborne campaign, western Denmark, IEEE Trans. Geosci. Remote Sens., 2012, vol. 50, pp. 1468–1482.

    Article  Google Scholar 

  2. Jones, L.A., Kimball, J.S., McDonald, K.C., Chan, S.T.K., Njoku, E.G., and Oechel, W.C., Satellite microwave remote sensing of boreal and Arctic soil temperatures from AMSR-E, IEEE Trans. Geosci. Remote Sens., 2007, vol. 45, pp. 2004–2018.

    Article  Google Scholar 

  3. Kremer, F., Schonhals, A., and Luck, W., Broadband Dielec-tric Spectroscopy, New York, 2002.

    Google Scholar 

  4. Mironov, V.L. and Savin, I.V., A temperature-dependent multirelaxation spectroscopic dielectric model for thawed and frozen organic soil at 0.05–15 GHz, Phys. Chem. Earth., 2015, vol. 83, pp. 57–64. https://doi.org/10.1016/j.pce.2015.02.011

    Article  Google Scholar 

  5. Mironov, V.L. and Savin, I.V., Temperature-dependent spectroscopic dielectric model at 0.05–16 ghz for a thawed and frozen Alaskan organic soil, Satellite Soil Moisture Retrieval (Techniques and Applications), Elsevier, 2016, pp. 169–186.

    Google Scholar 

  6. Mironov, V.L., Savin, S.V., and De Roo, R.D., Dielectric spectroscopic model for tussock and shrub tundra soils, Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona: IEEE, 2007, pp. 726–731.

  7. Mironov, V.L., De Roo, R.D., and Savin, I.V., Temperature-dependable microwave dielectric model for an Arctic soil, IEEE Trans. Geosci. Remote Sens., 2010a, vol. 48, pp. 2544–2556.

    Article  Google Scholar 

  8. Mironov, V.L., Komarov, S.A., Lukin, Yu.I., and Shatov, D.S., A technique for measuring the frequency spectrum of the complex permittivity of soil, J. Commun. Technol. Electron., 2010b, vol. 55, pp. 1368–1373.

    Article  Google Scholar 

  9. Mironov, V.L., Molostov, I.P., Lukin, Yu.I., and Karavaisky, A.Yu., Method of retrieving permittivity from S12 element of the waveguide scattering matrix, Int. Siberian Conf. on Control and Comm. (SIBCON), IEEE Conf. Publ., 2013a, https://doi.org/10.1109/SIBCON.2013.6693609

  10. Mironov, V.L., Bobrov, P.P., Fomin, S.V., and Karavaiskii, A.Yu., Generalized refractive mixing dielectric model of moist soils considering ionic relaxation of soil water, Russ. Phys. J., 2013b, vol. 56, pp. 319–324.

    Article  Google Scholar 

  11. Mironov, V.L., Muzalevskiy, K.V., and Savin, I.V., Retrieving temperature gradient in frozen active layer of Arctic tundra soils from radiothermal observations in L-band-theoretical modeling, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2013c, vol. 6, pp. 1781–1785.

    Article  Google Scholar 

  12. Mironov, V.L., Muzalevskiy, K.V., and Ruzicka, Z., Retrieving profile temperatures in a frozen topsoil near the TFS, Alaska, based on SMOS brightness temperatures at the 1.4-GHz frequency, IEEE Trans. Geosci. Remote Sens., 2016a, vol. 54, no. 12, pp. 7331–7338. https://doi.org/10.1109/TGRS.2016.2599272

    Article  Google Scholar 

  13. Mironov, V.L., Savin, I.V., and Karavaysky, A.Yu., Dielectric model in the frequency range 0.05 to 15 GHz at temperatures –30°C to 25°C for the samples of organic soils and litter collected in Alaska, Yamal, and Siberian Taiga, Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, 2016b, pp. 2684–2687. https://doi.org/10.1109/IGARSS.2016.7729693

  14. Muzalevskiy, K.V., Mikhailov, M.I., Mironov, V.L., and Ruzicka, Z., Retrieving soil moisture and temperature using SMOS observations at a test site in the Yamal Peninsula, Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, 2016, pp. 4932–4935. https://doi.org/10.1109/IGARSS.2016.7730287

  15. Rautiainen, K., Lemmetyinen, J., Pulliainen, J., Vehvilainen, J., Drusch, M., Kontu, A., Kainulainen, J., and Seppanen, J., L-band radiometer observations of soil processes in boreal and subarctic environments, IEEE Trans. Geosci. Remote Sens., 2012, vol. 50, pp. 1483–1497.

    Article  Google Scholar 

  16. Watanabe, M., Kadosaki, G., Yongwon, Kim., Ishikawa, M., Kushida, K., Sawada, Y., Tadono, T., Fukuda, M., and Sato, M., Analysis of the sources of variation in L-band backscatter from terrains with permafrost, IEEE Trans. Geosci. Remote Sens., 2012, vol. 50, pp. 44–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Savin.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, V.L., Savin, I.V. Spectroscopic Multirelaxation Dielectric Model of Thawed and Frozen Arctic Soils Considering the Dependence on Temperature and Organic Matter Content. Izv. Atmos. Ocean. Phys. 55, 986–995 (2019). https://doi.org/10.1134/S0001433819090305

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090305

Keywords:

Navigation