Skip to main content
Log in

Influence of Dielectric Relaxations of Soil Water on the Temperature Dependence of Soil Permittivity

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using a generalized refractive mixture dielectric model, the influence of the relative permittivity spectra of bound and unbound water in mineral soil on the nature of the temperature dependence of the relative permittivity of natural mineral soil, with a clay fraction content of 41.3%, was studied in the electromagnetic field frequency range from 50 MHz to 15 GHz. The causes of the emergence of intersections in the relative permittivity spectra of mineral soil, obtained at different temperatures but for a sample of the same moisture content, have been studied. It has been proved that the emergence of such an intersection point in the frequency range up to 1.5 GHz is due to the Maxwell–Wagner effect in bound water. The dependences of the frequency of the intersection point of the relative permittivity spectra of mineral soil on the temperature and volumetric content of bound and unbound water have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. G. C. Topp, J. L. Davis, and A. P. Annan, Water Resour. Res. 16, 574 (1980). https://doi.org/10.1029/wr016i003p00574

    Article  ADS  Google Scholar 

  2. J. A. Huisman, S. S. Hubbard, J. D. Redman, and A. P. Annan, Vadose Zone J. 2, 476 (2003). https://doi.org/10.2136/vzj2003.4760

    Article  Google Scholar 

  3. F. Kizito, C. S. Campbell, G. S. Campbell, D. R. Cobos, B. L. Teare, B. Carter, and J. W. Hopmans, J. Hydrol. 352, 367 (2008). https://doi.org/10.1016/j.jhydrol.2008.01.021

    Article  ADS  Google Scholar 

  4. A. Woszczyk, J. Szerement, A. Lewandowski, M. Kafarski, A. Szypłowska, A. Wilczek, and W. Skierucha, Comput. Electron. Agric. 167, 105042 (2019). https://doi.org/10.1016/j.compag.2019.105042

  5. J. Szerement, A. Woszczyk, A. Szyplowska, M. Kafarski, A. Lewandowski, A. Wilczek, and W. Skierucha, in 2020 Baltic URSI Symposium (URSI), Warsaw, 2020 (IEEE, 2020), pp. 158–160. https://doi.org/10.23919/ursi48707.2020.9254059

  6. V. L. Mironov, A. Yu. Karavayskiy, Yu. I. Lukin, and I. P. Molostov, Int. J. Remote Sensing 41, 3845 (2020). https://doi.org/10.1080/01431161.2019.1708506

    Article  ADS  Google Scholar 

  7. T. A. Belyaeva, P. P. Bobrov, E. S. Kroshka, and A. V. Repin, in 2017 Progress in Electromagnetics Research Symp.–Spring (PIERS), St. Petersburg, 2017 (IEEE, 2017), pp. 3046–3051. https://doi.org/10.1109/piers.2017.8262278

  8. M. Loewer, T. Günther, J. Igel, S. Kruschwitz, T. Martin, and N. Wagner, Geophys. J. Int. 210, 1360 (2017). https://doi.org/10.1093/gji/ggx242

    Article  ADS  Google Scholar 

  9. A. Kemna, A. Binley, G. Cassiani, E. Niederleithinger, A. Revil, L. Slater, K. H. Williams, A. F. Orozco, F. Haegel, A. Hördt, S. Kruschwitz, V. Leroux, K. Titov, and E. Zimmermann, Near Surf. Geophys. 10, 453 (2012). https://doi.org/10.3997/1873-0604.2012027

    Article  Google Scholar 

  10. N. Wagner and A. Scheuermann, Can. Geotechnical J. 46, 1202 (2009). https://doi.org/10.1139/t09-055

    Article  Google Scholar 

  11. D. A. Robinson, M. G. Schaap, D. Or, and S. B. Jones, Water Resour. Res. 41, W02007 (2005). https://doi.org/10.1029/2004wr003816

  12. P. Debye, Polar Molecules: Wisconsin Lectures (Chemical Catalog, New York, 1929).

    Google Scholar 

  13. P. Hoekstra and A. Delaney, J. Geophys. Res. 79, 1699 (1974). https://doi.org/10.1029/jb079i011p01699

    Article  ADS  Google Scholar 

  14. P. P. Bobrov, A. S. Lapina, and A. V. Repin, in Progress in Electromagnetics Research Symposium (Prague, 2015), pp. 1877–1880.

  15. K. Kupfer, Electromagnetic Aquametry: Electromagnetic Wave Interaction with Water and Moist Substances (Springer, Berlin, 2005). https://doi.org/10.1007/b137700

    Book  Google Scholar 

  16. Yo. Chen and D. Or, Water Resour. Res. 42, W06424 (2006). https://doi.org/10.1029/2005wr004590

  17. A. Revil, Water Resour. Res. 49, 306 (2013). https://doi.org/10.1029/2012wr012700

    Article  ADS  Google Scholar 

  18. N. Wagner, T. Bore, J. Robinet, D. Coelho, F. Taillade, and S. Delepine-lesoille, J. Geophys. Res.: Solid Earth 118, 4729 (2013). https://doi.org/10.1002/jgrb.50343

    Article  ADS  Google Scholar 

  19. S. Kruschwitz, C. Prinz, and A. Zimathies, J. Appl. Geophys. 135, 375 (2016). https://doi.org/10.1016/j.jappgeo.2016.07.007

    Article  ADS  Google Scholar 

  20. S. Bircher, F. Demontoux, S. Razafindratsima, E. Zakharova, M. Drusch, J. Wigneron, and Ya. Kerr, Remote Sensing 8, 1024 (2016). https://doi.org/10.3390/rs8121024

    Article  ADS  Google Scholar 

  21. G. K. Ganjegunte, Z. Sheng, and J. A. Clark, Appl. Water Sci. 2, 119 (2012). https://doi.org/10.1007/s13201-012-0032-7

    Article  ADS  Google Scholar 

  22. A. Stogryn, IEEE Trans. Microwave Theory Tech. 19, 733 (1971). https://doi.org/10.1109/tmtt.1971.1127617

    Article  ADS  Google Scholar 

  23. J. R. Bi`rchak, C. G. Gardner, J. E. Hipp, and J. M. Victor, Proc. IEEE 62, 93 (1974). https://doi.org/10.1109/proc.1974.9388

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation and the Krasnoyarsk Regional Fund of Science and Technology Support within the framework of scientific project no. 22-27-20112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Karavayskiy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by B. Alekseev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karavayskiy, A.Y., Lukin, Y.I. Influence of Dielectric Relaxations of Soil Water on the Temperature Dependence of Soil Permittivity. Opt. Spectrosc. 131, 1190–1199 (2023). https://doi.org/10.1134/S0030400X24700206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X24700206

Keywords:

Navigation