Skip to main content
Log in

Trends of Steric Sea Level Oscillations in the North Atlantic

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING SEAS AND OCEANS FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We consider trends of sea level steric oscillations in the North Atlantic in 2003–2015 using two independent approaches. The first method is based on the multidisciplinary application of altimetry (AVISO) and gravimetry (GRACE mission) data. The second method is based on the integral assessment of steric oscillations using variations in the fluid volume caused by variations in water density: the calculations are carried out using the SODA, EN4, and ARMOR reanalysis data. It is shown that the application of the combined altimetry and GRACE data result in overestimated values of steric oscillations and their trends. This is related to the fact that the GRACE observations show the variations in the ocean mass; hence the sea level variations are presented in a relative coordinate system which is not the geocentric system. This system does not take into account the effects of the elastic deformation of the ocean bottom and the corresponding redistribution of the water volumes. It is shown that the maximum bias of these estimates and the errors in determining the steric oscillations and their trends based on the first method is characteristic of regions located near Greenland. This is caused by the contribution of the negative trend component to the GRACE data. If the estimates are made in regions remote from Greenland coasts, the trend component in the GRACE measurements is insignificantly manifested and the trends in the steric oscillations calculated using the method that jointly uses the AVISO and GRACE data are similar to the trends in the sea level variations based on the altimetry data. The trends of the steric oscillations of the sea level calculated from the reanalysis data are similar in the spatial distribution between both calculations and also similar to the trends in the sea level variations based on the altimetry data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Belonenko, T.V. and Fedorov, A.M., Steric level fluctuations and deep convection in the Labrador and Irminger seas, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 1039–1049.

    Article  Google Scholar 

  2. Belonenko, T.V., Fedorov, A.M., Bashmachnikov, I.L., and Foux, V.R., Current intensity trends in the Labrador and Irminger seas based on satellite altimetry data, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 1031–1038.

    Article  Google Scholar 

  3. Carton, J.A. and Giese, B.S., A reanalysis of ocean climate using simple ocean data assimilation (SODA), Mon. Weather Rev., 2008, vol. 136, no. 8, pp. 2999–3017.

    Article  Google Scholar 

  4. Carton, J.A., Chepurin, G., Cao, X., and Giese, B.S., A simple ocean data assimilation analysis of the global upper ocean 1950–1995, Part 1: Methodology, J. Phys. Oceanogr., 2000, vol. 30, pp. 294–309.

    Article  Google Scholar 

  5. Chambers, D.P., Observing seasonal steric sea level variations with GRACE and satellite altimetry, J. Geophys. Res., 2006, vol. 111, no. C3, C03010. https://doi.org/10.1029/2005JC002914

    Article  Google Scholar 

  6. Chambers, D.P. and Bonin, J.A., Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean, Ocean Sci., 2012, vol. 8, pp. 859–868. https://doi.org/10.5194/os-8-859-2012

    Article  Google Scholar 

  7. Chambers, D.P., Cazenave, A., Champollion, N., Diengh, H., Llovel W., Forsberg, R., von Schuckmann, K., and Wada, Y., Evaluation of the global mean sea level budget between 1993 and 2014, Surv. Geophys., 2016, vol. 38, no. 1, pp. 309–327. https://doi.org/10.1007/s10712-016-9381-3

    Article  Google Scholar 

  8. Chen, X., Zhang, X., Church, J.A., Watson, C.S., King, M.A., Monselesan, D., Legresy, B., and Harig, C., The increasing rate of global mean sea-level rise during 1993–2014, Nat. Clim. Change, 2017, vol. 7, pp. 492–495.

    Article  Google Scholar 

  9. Dee, D.P., Uppala, S.M., Simmons, A.J., et al., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., vol. 137, no. 656, pp. 553–597.

  10. Fenoglio-Marc, L., Rietbroek, R., Grayek, S., Becker, M., Kusche, J., and Stanev, E., Water mass variation in the Mediterranean and black seas, J. Geodyn., 2012, no. 59, pp. 168–182. https://doi.org/10.1016/j.jog.2012.04.001

  11. Frederikse, T., Riva, R.E.M., and King, M.A., Ocean bottom deformation due to present-day mass redistribution and its impact on sea level observations, Geophys. Rev. Lett., 2017, vol. 44, no. 24. https://doi.org/10.1002/2017GL075419

  12. Fu, L.L. and Le Traon, P.-Y., Satellite altimetry and ocean dynamics, C. R. Geosci., 2006, vol. 338, nos. 14–15, pp. 1063–1076. http://dx.doi.Org/10.1016/j.crte.2006.05.015

    Article  Google Scholar 

  13. García, D., Ramillien, G., Lombard, A., and Cazenave, A., Steric sea-level variations inferred from combined Topex/Poseidon altimetry and grace gravimetry, Pure Appl. Geophys., 2007, vol. 164, no. 4, pp. 721–731.

    Article  Google Scholar 

  14. Good, S.A., Martin, M.J., and Rayner, N.A., EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, J. Geophys. Res.: Oceans, 2013, vol. 118, pp. 6704–6716. https://doi.org/10.1002/2013JC009067

    Article  Google Scholar 

  15. Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y., High resolution 3D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 2012, no. 8, no. 5, pp. 845–857. https://doi.org/10.5194/os-8-845-2012

  16. Han, G., Chen, N., Kuo, C.Y., Shum, C.K., and Ma, Z., Interannual and decadal sea surface height variability over the Northwest Atlantic slope, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 2016. https://doi.org/10.1109/JSTARS.2016.2584778

  17. Kleinherenbrink, M., Riva, R., and Sun, Y., Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: A case study in the North Atlantic Ocean, Ocean Sci., 2016, vol. 12, no. 6, pp. 1179–1203. https://doi.org/10.5194/os-12-1179-2016

    Article  Google Scholar 

  18. Kopp, R.E., Horton, R.M., Little, C.M., Mitrovica, J.X., Oppenheimer, M., Rasmussen, D.J., Strauss, B.H., and Tebaldi, C., Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites, Earth’s Future, 2014, vol. 2, no. 8, pp. 383–406. https://doi.org/10.1002/2014EF000239

    Article  Google Scholar 

  19. Kuo, C., Determination and Characterization of 20th Century Global Sea Level Rise, Columbus, Ohio: Geodetic Science and Surveying, Ohio State University, 2006, Rep. no. 478.

  20. Kuo, C.-Y., Shum, C.K., Guo, J.-Y., Yi, Y., Braun, A., Fukumori, I., Sato, T., and Shibuya, K., Southern Ocean mass variation studies using GRACE and satellite altimetry, Earth, Planets Space, 2008, vol. 60, no. 5, pp. 477–485. https://doi.org/10.1186/BF03352814

    Article  Google Scholar 

  21. Leuliette, E.W. and Willis, J.K., Balancing the sea level budget, Oceanography, 2011, no. 24, pp. 122–129. https://doi.org/10.5670/oceanog.2011.32

  22. Lombard, A., Garcia, D., Ramillien, G., Cazenave, A., Biancale, R., Lemoine, J.M., Flechtner, E., Schmidt, R., and Ishii, M., Estimation of steric sea level variations from combined GRACE and Jason-1 data, Earth Planet Sci. Lett., 2007, no. 254, pp. 194–202.

  23. Nerem, R.S., Chambers, D.R., Choe, C., and Mitchum, G.T., Estimating mean sea level change from the TOPEX and Jason altimeter missions, Mar. Geod., 2010, vol. 33, no. S1, pp. 435–446. https://doi.org/10.1080/01490419.2010.491031

    Article  Google Scholar 

  24. Ray, R.D., Luthcke, S.B., and van Dam, T., Monthly crustal loading corrections for satellite altimetry, J. Atmos. Oceanic Technol., 2013, vol. 30, no. 5, pp. 999–1005. https://doi.org/10.1175/JTECH-D-12-00152.1

    Article  Google Scholar 

  25. Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J., and Dahle, C., Revisiting the contemporary sea-level budget on global and regional scales, Proc. Nat. Acad. Sci. U.S.A., 2016, vol. 113, no. 6, pp. 1504–1509. https://doi.org/10.1073/pnas.1519132113

    Article  Google Scholar 

  26. Tamisiea, M.E., Ongoing glacial isostatic contributions to observations of sea level change, Geophys. J. Int., 2011, vol. 186, no. 3, pp. 1036–1044. https://doi.org/10.1111/j.1365-246X.2011.05116.x

    Article  Google Scholar 

  27. Thomas, M., Ocean induced variations of Earth’s rotation: Results from a simultaneous model of global ocean circulation and tides, Ph.D. Dissertation, University of Hamburg: Germany, 2002.

  28. Verbrugge, N., Mulet, S., Guinehut, S., and Buongiorno-Nardelli, B., ARMOR3D: A 3D multi-observations T, S, U, V product of the ocean, Geophys. Res. Abstr., 2017, vol. 19, p. EGU2017-17579.

    Google Scholar 

  29. Volkov, D.L. and Pujol, M.-I., Quality assessment of a satellite altimetry data product in the Nordic, Barents, and Kara seas, J. Geophys. Res.: Oceans, 2012, C03025. https://doi.org/10.1029/2011JC007557

  30. Volkov, D.L., Landerer, F.W., and Kirillov, S.A., The genesis of sea level variability in the Barents Sea, Cont. Shelf Res., 2013, no. 66, pp. 92–104. https://doi.org/10.1016/j.csr.2013.07.007

  31. Wahr, J., Swenson, S., and Velicogna, I., Accuracy of GRACE mass estimates, Geophys. Res. Lett., 2006, L06401. https://doi.org/10.1029/2005GL025305

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 18-17-00027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Belonenko.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belonenko, T.V., Koldunov, A.V. Trends of Steric Sea Level Oscillations in the North Atlantic. Izv. Atmos. Ocean. Phys. 55, 1106–1113 (2019). https://doi.org/10.1134/S0001433819090081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819090081

Keywords:

Navigation