Skip to main content

Advertisement

Log in

Arctic Sea Level During the Satellite Altimetry Era

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Results of the sea-level budget in the high latitudes (up to 80°N) and the Arctic Ocean during the satellite altimetry era. We investigate the closure of the sea-level budget since 2002 using two altimetry sea-level datasets based on the Envisat waveform retracking: temperature and salinity data from the ORAP5 reanalysis, and Gravity Recovery And Climate Experiment (GRACE) space gravimetry data to estimate the steric and mass components. Regional sea-level trends seen in the altimetry map, in particular over the Beaufort Gyre and along the eastern coast of Greenland, are of halosteric origin. However, in terms of regional average over the region ranging from 66°N to 80°N, the steric component contributes little to the observed sea-level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree well with the altimetry-based sea-level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus, we estimated the mass contribution from the difference between the altimetry-based sea level and the steric component. We also investigate the coastal sea level with tide gauge records. Twenty coupled climate models from the CMIP5 project are also used. The models lead us to the same conclusions concerning the halosteric origin of the trend patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ablain M, Cazenave A, Larnicol G, Balmaseda M, Cipollini P, Faugère Y, Fernandes MJ, Henry O, Johannessen JA, Knudsen P, Andersen O, Legeais J, Meyssignac B, Picot N, Roca M, Rudenko S, Scharffenberg MG, Stammer D, Timms G, Benveniste J (2015) Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci 11:67–82. doi:10.5194/os-11-67-2015

    Article  Google Scholar 

  • Andersen OB, Piccioni G (2016) Recent Arctic sea level variations from satellites. Front Mar Sci. doi:10.3389/fmars.2016.00076

    Google Scholar 

  • Andersen O, Knudsen P, Stenseng L (2015) The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry. IAG Symp. doi:10.1007/1345_2015_182

    Google Scholar 

  • Armitage TWK, Bacon S, Ridout AL, Thomas SF, Aksenov Y, Wingham DJ (2016) Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014. J Geophys Res Oceans 121:4303–4322. doi:10.1002/2015JC011579

    Article  Google Scholar 

  • Boyer TP, Antonov JI, Garcia HE, Johnson DR, Locarnini RA, Mishonov AV, Pitcher MT, Baranova OK, Smolyar IV (2006) World Ocean Database 2005. In: Levitus S (ed) NODC Atlas NESDIS 60. U.S. Government Printing Office, Washington

  • Blazquez A, Meyssignac B, Lemoine JM, Cazenave A, Berthier E (in preparation) Uncertainty in GRACE estimates of the mass redistributions at the Earth surface and impact on the sea level budget

  • Chambers DP (2012) GRACE monthly ocean mass grids Netcdf release 5.0. Ver. 5.0. PO.DAAC, CA, USA. doi:10.5067/TEOCN-0N005. Accessed 15 Dec 2015

  • Chambers DP, Bonin JA (2012) Evaluation of release 05 time-variable gravity coefficients over the ocean. Ocean Sci 8:859–868. doi:10.5194/os-8-859-2012

    Article  Google Scholar 

  • Chambers DP, Willis JK (2010) A global evaluation of ocean bottom pressure from GRACE, OMCT, and steric-corrected altimetry. J Ocean Atmos Technol 27:1395–1402. doi:10.1175/2010jtecho738.1

    Article  Google Scholar 

  • Chen JL, Wilson CR, Li J, Zhang Z (2015) Reducing leakage error in GRACE-observed long term ice mass change: a case study in West Antarctica. J Geod 89:925–940. doi:10.1007/s00190-015-0824-2

    Article  Google Scholar 

  • Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res. doi:10.1029/2010JB000850

    Google Scholar 

  • Cheng Y, Andersen OB, Knudsen P (2012) First evaluation of MyOcean altimetric data in the Arctic Ocean. Ocean Sci Discuss 9:291–314. doi:10.5194/osd-9-291-2012

    Article  Google Scholar 

  • Cheng Y, Andersen OB, Knudsen P (2015) An improved 20-year Arctic Ocean altimetric sea level data record. Mar Geod 38(2):146–162. doi:10.1080/01490419.2014.954087

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars M, Van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Gardner AS, Moholdt G, Graham Cogley J, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise, 2003–2009. Science 340:852–857. doi:10.1126/science.1234532

    Article  Google Scholar 

  • Geruo A, Wahr J, Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys J Int 192:557–572. doi:10.1093/gji/ggs030

    Article  Google Scholar 

  • Henry O, Prandi P, Llovel W, Cazenave A, Jevrejeva S, Stammer D, Meyssignac B, Koldunov N (2012) Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: contribution of the steric and mass components. J Geophys Res. doi:10.1029/2011JC007706

    Google Scholar 

  • Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29(3):493–504. doi:10.2112/JCOASTRES-D-12-00175.1

    Article  Google Scholar 

  • Koldunov NV, Serra N, Köhl A, Stammer D, Henry O, Cazenave A, Prandi P, Knudsen P, Andersen OB, Gao Y, Johannessen J (2014) Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970–2009. J Geophys Res Oceans 119:8936–8954. doi:10.1002/2014JC010170

    Article  Google Scholar 

  • Kouraev AV, Papa F, Mognard NM, Buharizin PI, Cazenave A, Crétaux JF, Dozortseva J, Remy F (2004) Sea ice cover in the Caspian and Areal Seas from historical and satellite data. J Mar Syst 47:89–100. doi:10.1016/j.jmarsys.2003.12.011

    Article  Google Scholar 

  • Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geod 83(10):903–913. doi:10.1007/s00190-009-0308-3

    Article  Google Scholar 

  • Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Rigor I, Andersen R, Steele M (2012) Changing Arctic Ocean freshwater pathways. Nature 481:66–70. doi:10.1038/nature10705

    Article  Google Scholar 

  • Ollivier A, Guibbaud M (2012) Envisat RA-2/MWR ocean data validation and cross-calibration activities. Yearly report. Technical note CLS.DOS/NT/12.021, contract SALP-RP-MA-EA-22062-CLS

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149. doi:10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  • Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth 120:450–487. doi:10.1002/2014JB011176

    Article  Google Scholar 

  • Permanent Service for Mean Sea Level (PSMSL) (2016) Tide gauge data. http://www.psmsl.org/data/obtaining/. Retrieved Nov 2016

  • Poisson JC et al (in preparation) Extending sea level estimation into the Arctic Ocean Using ENVISAT Altimetry

  • Prandi P, Ablain M, Cazenave A, Picot N (2012) A new estimation of mean sea level in the Arctic Ocean from satellite altimetry. Mar Geod 35(sup1):61–81. doi:10.1080/01490419.2012.718222

    Article  Google Scholar 

  • Proshutinsky A, Pavlov V, Bourke RH (2001) Sea level rise in the Arctic Ocean. Geophys Res Lett 28(11):2237–2240. doi:10.1029/2000GL012760

    Article  Google Scholar 

  • Proshutinsky A, AshiI M, Dvorkin EN, Häkkinen S, Krishfield RA, Peltier WR (2004) Secular sea level change in the Russian sector of the Arctic Ocean. J Geophys Res. doi:10.1029/2003JC002007

    Google Scholar 

  • Proshutinsky A, Ashik I, Häkkinen S, Hunke E, Krishfield R, Maltrud M, Maslowski W, Zhang J (2007) Sea level variability in the Arctic Ocean from AOMIP models. J Geophys Res. doi:10.1029/2006JC003916

    Google Scholar 

  • Proshutinsky A, Timmermans ML, Ashik I, Beszcynska-Moeller A, Carmack E, Eert J, Frolov I, Itoh M, Kikuchi T, Krishfield R, McLaughlin F, Rabe B, Schauer U, Shimada K, Sokolov V, Steele M, Toole J, Williams W, Woodgate R, Zimmermann S (2011) The Arctic Ocean. Bull Am Meteorol Soc 92(supplement 6):S145–S148

    Google Scholar 

  • Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: Ocean. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Rigor IG, Wallace JM, Colony RG (2002) Response of sea ice to the Arctic Oscillation. J Clim 15:2648–2663. doi:10.1175/1520-0442(2002)015<2648:rositt>2.0.co;2

    Article  Google Scholar 

  • Rudels B (2012) Arctic Ocean circulation and variability—advection and external forcing encounter constraints and local processes. Ocean Sci 8:261–286. doi:10.5194/os-8-261-2012

    Article  Google Scholar 

  • Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwarth M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sørensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi:10.1126/science.1228102

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308:1429. doi:10.1126/science.1108142

    Article  Google Scholar 

  • Swenson SC, Chambers DP, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth. doi:10.1029/2007JB005338

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Valladeau G, Thibaut P, Picard B, Poisson JC, Tran N, Picot N, Guillot A (2015) Using SARAL/AltiKa to improve Ka-band altimeter measurements for coastal zones, hydrology and ice: the PEACHI prototype. Mar Geod 38(S1):124–142. doi:10.1080/01490419.2015.1020176

    Article  Google Scholar 

  • Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Velicogna I, Sutterley TC, van den Broeke MR (2014) Regional acceleration in icemass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys Res Lett. doi:10.1002/2014GL061052

    Google Scholar 

  • Volkov DL (2014) Do the North Atlantic winds drive the nonseasonal variability of the Arctic Ocean sea level? Geophys Res Lett. doi:10.1002/2013GL059065

    Google Scholar 

  • Volkov DL, Landerer FW (2013) Nonseasonal fluctuations of the Arctic Ocean mass observed by the GRACE satellites. J Geophys Res Oceans 118:6451–6460. doi:10.1002/2013JC009341

    Article  Google Scholar 

  • Volkov DL, Landerer FW, Kirillov SA (2013) The genesis of sea level variability in the Barents Sea. Cont Shelf Res 66:92–104. doi:10.1016/j.csr.2013.07.007

    Article  Google Scholar 

  • Watkins MW, Wiese DN, Yuan D-N, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth. doi:10.1002/2014JB011547

    Google Scholar 

  • Wiese DN (2015) GRACE monthly global water mass grids netcdf release 5.0. Ver. 5.0. PO.DAAC, CA, USA. doi:10.5067/TEMSC-OCL05. Accessed 15 Dec 2015

  • Yin J, Griffies SM, Stouffer RJ (2010) Spatial variability of sea level rise in twenty-first century projections. J Clim. doi:10.1175/2010JCLI3533,1

    Google Scholar 

  • Zuo H, Balmaseda MA, Mogensen K (2015) The new eddy-permitting ORAP5 ocean reanalysis: description, evaluation and uncertainties in climate signals. Clim Dyn. doi:10.1007/s00382-015-2675-1

    Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for their comments that helped us to improve the manuscript. Alice Carret is supported by the MONARCH project of the 7th Framework Programme of the European Union. This paper is an overview of the oral presentation delivered at the International Space Science Institute (ISSI) workshop on “Integrative study of the mean sea level and components” in February 2015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Carret or A. Cazenave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carret, A., Johannessen, J.A., Andersen, O.B. et al. Arctic Sea Level During the Satellite Altimetry Era. Surv Geophys 38, 251–275 (2017). https://doi.org/10.1007/s10712-016-9390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-016-9390-2

Keywords

Navigation