Skip to main content
Log in

Russian Investigations in Atmospheric Chemistry for 2015–2018

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This is a brief review of Russian studies in the field of atmospheric chemistry for 2015–2018, covering studies on tropospheric chemistry, chemistry of the ozone layer, heterophase processes, and those related to the chemical aspects of climate and its changes. The review was prepared by the Commission for Atmospheric Chemistry of the Meteorology and Atmospheric Sciences Section of the National Geophysical Committee. The report was considered and approved at the 27th General Assembly of the International Union of Geodesy and Geophysics (IUGG)1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Russian National Report, Meteorology and Atmospheric Sciences. 2015–2018, Ed. by I. I. Mokhov and A. A. Krivolutsky, National Geophysical Committee RAS. Moscow, 2019.

REFERENCES

  1. I. K. Larin, “Russian investigations in atmospheric chemistry for 2011–2014,” Izv., Atmos. Ocean. Phys. 52 (2), 147–153 (2016).

    Article  Google Scholar 

  2. I. K. Larin, A. I. Spasskii, E. M. Trofimova, and N. G. Proncheva, “Measurement of the rate constant of a reaction of chlorine atoms with CH3Br in a temperature range of 298–358 K using the resonance fluorescence of chlorine atoms,” Kinet. Catal. 59 (1), 11–16 (2018).

    Article  Google Scholar 

  3. I. K. Larin, A. I. Spasskii, E. M. Trofimova, and N. G. Proncheva, “Measuring the rate constant of the reaction between chlorine atoms and CHF2Br by Cl atom resonance fluorescence,” Kinet. Catal. 57 (3), 308–312 (2016).

    Article  Google Scholar 

  4. E. S. Vasil’ev, A. G. Syromyatnikov, D. K. Shartava, G. V. Karpov, and I. I. Morozov, “Mass-spectrometry study of dichloracetic acid,” Khim. Bezop. 2 (1), 206–212 (2018).

    Google Scholar 

  5. N. D. Volkov, I. I. Morozov, and E. S. Vasil’ev, “Kinetics of the reaction of fluorine atoms with pyridine,” Khim. Bezop. 2 (2), 151–157 (2018).

    Google Scholar 

  6. I. I. Morozov, E. S. Vasil’ev, G. V. Karpov, and N. I. Butkovskaya, “Transformation of halogen-containing molecules in the atmosphere,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 153 [in Russian].

  7. S. N. Dubtsov, G. G. Dul’tseva, M. E. Plokhotnichenko, P. V. Koshlyakov, and T. V. Kobzeva, “Investigation of furfural photolysis and photochemical aerosol formation kinetics,” Opt. Atmos. Okeana 30 (6), 476–480 (2017).

    Google Scholar 

  8. Yu. A. Kolbanovskii and Yu. A. Borisov, “Quantum chemical calculations on the mechanism of the reaction between dicarbene C2(X 1 \(\Sigma _{{\text{G}}}^{ + }\)) and molecular nitrogen,” Russ. J. Phys. Chem. 9 (1), 29–35 (2015).

    Article  Google Scholar 

  9. P. F. Demchenko, A. S. Ginzburg, G. G. Aleksandrov, A. I. Vereskov, G. I. Gorchakov, N. N. Zavalishin, P. V. Zakharova, E. A. Lezina, and N. I. Yudin, “Statistical modeling of average daily concentration of pollutants in the atmosphere over Moscow megalopolis by the multiple regression method,” Russ. Meteorol. Hydrol. 40 (10), 658–666 (2015).

    Article  Google Scholar 

  10. K. G. Rubinshtein, A. N. Safronov, D. A. Pripachkin, R. Yu. Ignatov, S. V. Emelina, E. V. Nabokova, M. M. Kurbatova, D. V. Blagodatskikh, R. V. Arutyunyan, O. S. Sorokovikova, and V. N. Semenov, “Comparison of the results of 85Kr transport modeling with the ACURATE field experiment data,” Russ. Meteorol. Hydrol. 42 (3), 168–180 (2017).

    Article  Google Scholar 

  11. I. Yu. Shalygina, M. I. Nakhaev, I. N. Kuznetsova, E. V. Berezin, I. B. Konovalov, D. V. Blinov, and A. A. Kirsanov, “Comparison of surface concentration of polluting substances calculated by chemistry transport models with measurement data for the Moscow region, " Opt. Atmos. Okeana 30 (1), 53–59 (2017).

    Google Scholar 

  12. P. N. Antokhin, A. V. Gochakov, A. B. Kolker, and A. V. Penenko, “Comparison of WRF-CHEM chemical transport model calculations with aircraft measurements in Norilsk,” Atmos. Oceanic Opt. 31 (4), 372–380 (2018).

    Article  Google Scholar 

  13. M. A. Lokoshchenko, E. Yu. Zhdanova, A. Yu. Bogdanovich, E. V. Gorbarenko, V. G. Perepelkin, et al., Ecological and Climatic Characteristics of the Moscow Atmosphere in 2017 According to Data of the MSU Meteorological Observatory (MAKS Press, Moscow, 2018).

    Google Scholar 

  14. Yu. N. Chizhova, I. D. Eremina, N. A. Budantseva, G. V. Surkova, and Yu. K. Vasil’chuk, “The isotope method for estimating the atmospheric precipitation in Moscow,” Gig. Sanit. 9 (8), 737–743 (2017).

    Google Scholar 

  15. N. F. Elansky, R. D. Kuznetsov, Ya. M. Verevkin, N. A. Ponomarev, V. S. Rakitin, A. V. Shilkin, E. G. Semutnikova, and P. V. Zakharova, “Temporal variability of pollutant concentrations in the Moscow atmosphere and their emission estimates,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 10 [in Russian].

  16. G. I. Gorchakov, E. G. Semutnikova, A. V. Karpov, and G. A. Kuznetsov, “The Moscow smoke haze of October 2014. Variations in gaseous components of atmospheric pollution,” Opt. Atmos. Okeana 30 (6), 481–488 (2017).

    Article  Google Scholar 

  17. D. P. Gubanova, I. B. Belikov, N. F. Elansky, A. I. Skorokhod, and N. E. Chubarova, “Variations in PM2.5 surface concentration in Moscow according to observations at MSU Meteorological Observatory,” Atmos. Oceanic Opt. 31 (3), 290–299 (2018).

    Article  Google Scholar 

  18. V. M. Kopeikin, A. S. Emilenko, A. A. Isakov, O. V. Loskutova, and T. Ya. Ponomareva, “Variability of Soot and Fine Aerosol in the Moscow Region in 2014–2016,” Atmos. Oceanic Opt. 31 (3), 243–249 (2018).

    Article  Google Scholar 

  19. M. Yu. Arshinov, B. D. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, A. S. Kozlov, G. S. Pevneva, D. V. Simonenkov, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 1. Geographic features and temporal dynamics,” Opt. Atmos. Okeana 30 (8), 716–722 (2017).

    Google Scholar 

  20. M. Yu. Arshinov, B. D. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, A. S. Kozlov, G. S. Pevneva, D. V. Simonenkov, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 2. Vertical distribution, Opt. Atmos. Okeana 30 (9), 733–739 (2017).

    Google Scholar 

  21. M. Yu. Arshinov, B. D. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, A. S. Kozlov, G. S. Pevneva, D. V. Simonenkov, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 3. Forest fire products, Opt. Atmos. Okeana 30 (9), 740–749 (2017).

    Google Scholar 

  22. E. G. Semoutnikova, G. I. Gorchakov, S. A. Sitnov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, T. Ya. Ponomareva, A. A. Isakov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, and G. A. Kuznetsov, “Siberian smoke haze over European territory of Russia in July 2016: Atmospheric pollution and radiative effects,” Atmos. Oceanic Opt. 31 (2), 171–180 (2018).

    Article  Google Scholar 

  23. O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, P. Nédélec, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic,” Atmos. Oceanic Opt. 31 (3), 300–310 (2018).

    Article  Google Scholar 

  24. A. S. Emilenko, M. A. Sviridenkov, V. M. Kopeikin, and G. Wang, “Long-term variability of air pollution with black carbon in the region of Beijing in autumn periods,” Atmos. Oceanic Opt. 30 (6), 550–554 (2017).

    Article  Google Scholar 

  25. M. A. Lokoshchenko, N. F. Elansky, A. V. Trifonova, I. B. Belikov, and A. I. Skorokhod, “On the limiting levels of air pollution in Moscow,” Vestn. Mosk. Univ. Ser. 5: Geogr., No. 4, 29–39 (2016).

  26. S. N. Kotelnikov, E. V. Stepanov, and V. P. Chelibanov, “Spatial-temporal variability of ground-level ozone in St. Petersburg, Kirov region, and Crimea in 2011–2012,” Atmos. Oceanic Opt. 30 (3), 300–300 (2017).

    Article  Google Scholar 

  27. A. V. Panov, A. S. Prokushkin, A. V. Bryukhanov, M. A. Korets, E. I. Ponomarev, N. V. Sidenko, G. K. Zrazhevskaya, A. V. Timokhina, and M. O. Andreae, “A complex approach for the estimation of carbonaceous emissions from wildfires in Siberia,” Russ. Meteorol. Hydrol. 43 (5), 295–301 (2018).

    Article  Google Scholar 

  28. N. I. Yanchenko and E. I. Kotova, “Sources of fluorine in precipitation in Bratsk,” Meteorol. Gidrol., No. 5, 108–112 (2018).

  29. A. S. Zayakhanov, G. S. Zhamsueva, V. V. Tsydypov, and T. S. Bal’zhanov, “Diurnal dynamics of ozone and other trace gases in the coastal zone of Lake Baikal (Boyarskii site),” Meteorol. Gidrol., No. 8, 85–92 (2017).

  30. A. N. Borovskii, A. Ya. Arabov, G. S. Golitsyn, A. N. Gruzdev, N. F. Elansky, A. S. Elokhov, I. I. Mokhov, V. V. Savinykh, I. A. Senik, and A. V. Timazhev, “Variations of total nitrogen oxide content in the atmosphere over the North Caucasus,” Russ. Meteorol. Hydrol. 41 (2), 93–103 (2016).

    Article  Google Scholar 

  31. A. V. Timokhina, A. S. Prokushkin, A. A. Onuchin, A. V. Panov, G. B. Kofman, S. V.Verkhivets, and M. Heimann, “Long-term trend in CO2 concentration in the surface atmosphere over Central Siberia,” Russ. Meteorol. Hydrol. 40 (3), 186–190 (2015).

    Article  Google Scholar 

  32. A. Yu. Romanchuk, S. N. Kalmykov, A. B. Kersting, and M. Zavarin, “Behavior of plutonium in the environment,” Phys.-Usp. 85 (9), 995–1010 (2016).

    Google Scholar 

  33. E. V. Berezina, K. B. Moiseenko, A. I. Skorokhod, N. F. Elansky, and I. B. Belikov, “Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia,” Dokl. Earth Sci. 474 (1), 599–603 (2017).

    Article  Google Scholar 

  34. V. N. Kozhevnikov, N. F. Elansky, and K. B. Moiseenko, “Mountain wave-induced variations of ozone and total nitrogen dioxide contents over the subpolar Urals,” Dokl. Earth Sci. 475 (6), 958–962 (2017).

    Article  Google Scholar 

  35. G. S. Golitsyn, E. I. Grechko, Wang Gengchen, Wang Pucai, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, and E. V. Fokeeva, “Studying the Pollution of Moscow and Beijing Atmospheres with Carbon Monoxide and Aerosol,” Izv., Atmos. Ocean. Phys. 51 (1), 1–11 (2015).

    Article  Google Scholar 

  36. N. F. Elansky, M. A. Lokoshchenko, A. V. Trifanova, I. B. Belikov, and A. I. Skorokhod, “On contents of trace gases in the atmospheric surface layer over Moscow,” Izv., Atmos. Ocean. Phys. 51 (1), 30–41 (2015).

    Article  Google Scholar 

  37. Ya. A. Virolainen, Yu. M. Timofeyev, A. V. Poberovskii, O. Kirner, and M. Hoepfner, “Chlorine nitrate in the atmosphere over St. Petersburg,” Izv., Atmos. Ocean. Phys. 51 (1), 49–56 (2015).

    Article  Google Scholar 

  38. S. P. Smyshlyaev, E. A. Mareev, V. Ya. Galin, and P. A. Blakitnaya, “Modeling the influence of methane emissions from Arctic gas hydrates on regional variations in composition of the lower atmosphere,” Izv., Atmos. Ocean. Phys. 51 (4), 412–422 (2015).

    Article  Google Scholar 

  39. Yu. A. Shtabkin, K. B. Moiseenko, A. I. Skorokhod, A. V. Vasileva, and M. Heimann, “Sources of and variations in tropospheric CO in Central Siberia: Numerical experiments and observations at the Zotino Tall Tower Observatory,” Izv., Atmos. Ocean. Phys. 52 (1), 45–56 (2016).

    Article  Google Scholar 

  40. V. A. Vetrov, V. V. Kuzovkin, and D. A. Manzon, “Precipitation acidity and fallout of nitrogen and sulfur on the territory of the Russian Federation from the data of monitoring the chemical composition of snow cover,” Russ. Meteorol. Hydrol. 40 (10), 667–674 (2015).

    Article  Google Scholar 

  41. F. V. Kashin, V. N. Aref’ev, N. I. Sizov, R. M. Akimenko, and L. B. Upenekm “Background component of carbon oxide concentrations in the surface air (Obninsk Monitoring Station),” Izv., Atmos. Ocean. Phys. 52 (3), 247–252 (2016).

    Article  Google Scholar 

  42. S. A. Sitnov, I. I. Mokhov, and A. V. Dzhola, “Total content of carbon monoxide in the atmosphere over Russian regions according to satellite data,” Izv., Atmos. Ocean. Phys. 53 (1), 32–48 (2017).

    Article  Google Scholar 

  43. D. V. Ionov and A. V. Poberovskii, “Integral emission of nitrogen oxides from the territory of St. Petersburg based on the data of mobile measurements and numerical simulation results,” Izv., Atmos. Ocean. Phys. 53 (2), 204–212 (2017).

    Article  Google Scholar 

  44. S. A. Sitnov, I. I. Mokhov, G. I. Gorchakov, and A. V. Dzhola, “Smoke haze over the European part of Russia in the summer of 2016: A link to wildfires in Siberia and atmospheric circulation anomalies,” Russ. Meteorol. Hydrol. 42 (8), 518–528 (2017).

    Article  Google Scholar 

  45. S. A. Sitnov and I. I. Mokhov, “Weekly cycles of formaldehyde and nitrogen dioxide in the atmosphere over Northern Eurasia: Anthropogenic or natural?,” Proc. SPIE 10466, 104665T (2017). https://doi.org/10.1117/12.2287151

    Article  Google Scholar 

  46. S. A. Sitnov and I. I. Mokhov, “Formaldehyde and nitrogen dioxide in the atmosphere during summer weather extremes and wildfires in European Russia in 2010 and Western Siberia in 2012,” Int. J. Remote Sens. 38 (14), 4086–4106 (2017).

    Article  Google Scholar 

  47. B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Air-temperature dependence of the ozone generation rate in the surface air layer,” Atmos. Oceanic Opt. 31 (2), 187–196 (2018).

    Article  Google Scholar 

  48. A. E. Aloyan, A. N. Yermakov, and V. O. Arutyunyan, “Aerosol in the troposphere and lower stratosphere,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 108 [in Russian].

  49. A. N. Yermakov, A. E. Aloyan, and V. O. Arutyunyan, “Carbonate aerosol particles in the urban atmosphere and their chemical transformations (the test case of Irkutsk), " in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 135 [in Russian].

  50. I. D. Eremina, A. E. Aloyan, V. O. Arutyunyan, I. K. Larin, N. E. Chubarova, and A. N. Yermakov, “Hydrocarbonates in atmospheric precipitation of Moscow: Monitoring data and analysis,” Izv., Atmos. Ocean. Phys. 53 (3), 334–342 (2017).

    Article  Google Scholar 

  51. V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, and E. V. Shardakova, “Initial uptake of NO2 on methane flame soot,” Russ. J. Phys. Chem. B 9 (3), 327–335 (2015).

    Article  Google Scholar 

  52. V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, and E. V. Shardakova, “Kinetics of NO2 uptake on methane flame soot,” Russ. J. Phys. Chem. B 10 (1), 172–178 (2016).

    Article  Google Scholar 

  53. A. E. Aloyan, A. N. Yermakov, and V. O. Arutyunyan, “Aerosol in the upper troposphere and lower stratosphere. Sulfate particles at northern latitudes,” Opt. Atmos. Okeana 31 (2), 136–142 (2018).

    Google Scholar 

  54. A. Yu. Manakov, N. V. Pen’kov, T. V. Rodionova, A. N. Nesterov, and E. E. Fesenko, “Kinetics of formation and dissociation of gas hydrates,” Phys.-Usp. 86 (9), 845-869 (2017).

    Google Scholar 

  55. A. E. Aloyan, A. N. Yermakov, and V. O. Arutyunyan, “Mechanism and kinetics of the formation and transport of aerosol particles in the lower stratosphere,” Russ. J. Phys. Chem. A 92 (3), 597–602 (2018).

    Article  Google Scholar 

  56. V. N. Golubev, “A role of aerosol particles in atmospheric ice nucleation,” Russ. Meteorol. Hydrol. 40 (12), 787–793 (2015).

    Article  Google Scholar 

  57. A. E. Aloyan, A. N. Yermakov, and V. O. Arutyunyan, “The role of sulfate aerosol in the formation of cloudiness over the sea,” Izv., Atmos. Ocean. Phys. 52 (4), 353–364 (2016).

    Article  Google Scholar 

  58. I. K. Larin, A. E. Aloyan, and A. N. Yermakov, “Chlorine activation of the lower stratosphere at mid-latitudes: Impact on the ozone layer,” Russ. J. Phys. Chem. B 10 (5), 860–864 (2016).

    Article  Google Scholar 

  59. A. E. Aloyan, A. N. Yermakov, and V. O. Arutyunyan, “Modeling the formation of polar stratospheric clouds with allowance for kinetic and heterogeneous processes,” Izv., Atmos. Ocean. Phys. 51 (3), 241–250 (2015).

    Article  Google Scholar 

  60. A. A. Lushnikov, V. A. Zagainov, and Yu. S. Lyubovtseva, “Initial stage of aerosol formation from oversaturated vapors,” Russ. J. Phys. Chem. A 92 (3), 613–619 (2018).

    Article  Google Scholar 

  61. I. V. Kumpanenko, A. V. Roshchin, N. A. Ivanova, E. I.  Zelenina, T. C. Volochenko, and E. O. Panin, “Heterogeneous photocatalytic oxidation of pollutants in air on TiO2, particles” Russ. J. Phys. Chem. B 12 (1), 58–66 (2018).

    Article  Google Scholar 

  62. G. I. Gorchakov, S. A. Sitnov, and E. G. Semutnikova, “Smoke aerosol ageing during long-range transport,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 127 [in Russian].

  63. I. B. Konovalov, E. V. Berezin, and M. Beekmann, “Effect of photochemical self-action of carbon-containing aerosol: Wildfires,” Izv., Atmos. Ocean. Phys. 52 (3), 263–270 (2016).

    Article  Google Scholar 

  64. I. K. Larin, Chemical Physics of the Ozone Layer (RAN, Moscow, 2018) [in Russian].

    Google Scholar 

  65. I. K. Larin, “On the recovery of the ozone layer in the northern hemisphere in the 21st century,” Russ. J. Phys. Chem. B 9 (1), 157–162 (2015).

    Article  Google Scholar 

  66. I. K. Larin, “Chemical composition of the middle atmosphere and its changes in the 21st century,” Russ. J. Phys. Chem. B 12 (6), 1094–1098 (2018).

    Article  Google Scholar 

  67. A. N. Yermakov and I. K. Larin, “Chemical physics of the ozone layer,” Istor. Nauki Tekh., No. 3, 90–100 (2017).

  68. I. K. Larin, “On the theory of chain processes in the ozonosphere,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 149 [in Russian].

  69. I. K. Larin, “On the contribution of Ox, HOx, NOx, ClOx, and BrOx cycles into the destruction of stratospheric ozone in the 21st century,” Russ. J. Phys. Chem. B 11 (1), 189–194 (2017).

    Article  Google Scholar 

  70. I. K. Larin, “Odd oxygen and its atmospheric lifetime,” Russ. J. Phys. Chem. B 11 (2), 375–379 (2017).

    Article  Google Scholar 

  71. I. K. Larin, “Unresolved problems of the chemistry of the middle atmosphere,” Khimicheskaya fizika, Russ. J. Phys. Chem. B 12 (4), 791–796 (2018).

    Article  Google Scholar 

  72. S. P. Smyshlyaev, A. I. Pogoreltsev, V. Ya. Galin, and E. A. Drobashevskaya, “Influence of wave activity on the composition of the polar stratosphere,” Geomagn. Aeron. (Engl. Transl.) 56 (1), 95–109 (2016).

    Article  Google Scholar 

  73. A. A. Krivolutsky, T. Yu. Vyushkova, and I. A. Mironova, “Changes in the chemical composition of the atmosphere in the polar regions of the Earth after solar proton flares (3D modeling),” Geomagn. Aeron. (Engl. Transl.) 57 (2), 156–176 (2017).

    Article  Google Scholar 

  74. A. N. Gruzdev, V. Yu. Ageyeva, A. S. Elokhov, and I. I. Mokhov, “Statistical regularities of sudden stratospheric warmings and their effect on the content of NO2 and O3,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 70 [in Russian].

  75. A. N. Gruzdev, E. P. Kropotkina, S. V. Solomonov, and A. S. Elokhov, “Winter–spring anomalies in stratospheric O3 and NO2 contents over the Moscow region in 2010 and 2011,” Izv., Atmos. Ocean. Phys. 53 (2), 195–203 (2017).

    Article  Google Scholar 

  76. A. N. Gruzdev, E. P. Kropotkina, S. V. Solomonov, and A. S. Elokhov, “Anomalies of the ozone and nitrogen dioxide contents in the stratosphere over Moscow region as a manifestation of the dynamics of the stratospheric polar vortex,” Dokl. Earth Sci. 468 (2), 602–606 (2016).

    Article  Google Scholar 

  77. E. V. Rozanov, “Effect of precipitating energetic particles on the ozone layer and climate,” Russ. J. Phys. Chem. B 12 (4), 786–790 (2018).

    Article  Google Scholar 

  78. V. Yu. Ageyeva, A. N. Gruzdev, and A. S. Elokhov, “Increase in the stratospheric NO2 content derived from results of ground-based observations after the October 2003 solar proton event,” Dokl. Earth Sci. 479 (2), 539–542 (2018).

    Article  Google Scholar 

  79. N. E. Chubarova, E. Yu. Zhdanova, V. U. Khattatov, and P. N. Vargin, “Topical problems of studying UV radiation and ozone layer,” Vestn. Ross. Akad. Nauk 86 (9), 839–846 (2016).

    Google Scholar 

  80. S. P. Smyshlyaev, V. Ya. Galin, P. A. Blakitnaya, and A. K. Lemishchenko, “Analysis of the sensitivity of the composition and temperature of the stratosphere to the variability of spectral solar radiation fluxes induced by the 11-year cycle of solar activity,” Izv., Atmos. Ocean. Phys. 52 (1), 16–32 (2016).

    Article  Google Scholar 

  81. S. A. Sitnov and I. I. Mokhov “Ozone mini-hole formation under prolonged blocking anticyclone conditions in the atmosphere over European Russia in summer 2010,” Dokl. Earth Sci. 460 (1), 41–45 (2015).

    Article  Google Scholar 

  82. S. A. Sitnov, I. I. Mokhov, and A. R. Lupo, “Ozone, water vapor, and temperature anomalies associated with atmospheric blocking events over Eastern Europe in spring–summer 2010,” Atmos. Environ. 164, 180–194 (2017).

    Article  Google Scholar 

  83. S. A. Sitnov, I. I. Mokhov, and V. A. Bezverkhnii, “Analysis of the connections between total column ozone and precipitable water vapor over European Russia with the North Atlantic Oscillation in the summer of 2010,” Opt. Atmos. Okeana 29 (6), 457–461 (2016).

    Article  Google Scholar 

  84. V. Yu. Ageyeva and A. N. Gruzdev, “Seasonal features of quasi-biennial variations of NO2 stratospheric content derived from ground-based measurements,” Izv., Atmos. Ocean. Phys. 53 (1), 65–75 (2017).

    Article  Google Scholar 

  85. A. N. Gruzdev and A. S. Elokhov, “Long-term sounding of stratospheric NO2 content at the Zvenigorod scientific station of the A.M. Obukhov Institute of Atmospheric Physics, RAS,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 131 [in Russian].

  86. A. A. Krivolutsky, T. Yu. V’yushkova, L. A. Cherepanova, A. A. Kukoleva, A. I. Repnev, and M. V. Banin, “The three-dimensional photochemical model CHARM. Incorporation of solar activity,” Geomagn. Aeron. (Engl. Transl.) 55 (1), 59–88 (2015).

    Article  Google Scholar 

  87. A. R. Ivanova, “Stratosphere–troposphere exchange and its specific features at extratropical latitudes,” Russ. Meteorol. Hydrol. 41 (3), 170–185 (2016).

    Article  Google Scholar 

  88. Yu. M. Timofeev, A. V. Polyakov, and A. V. Poberovsky, “HCl content has ceased to increase in the atmosphere of the Northern Hemisphere,” Dokl. Earth Sci. 470 (1), 994–996 (2016).

    Article  Google Scholar 

  89. K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, and A. V. Timazhev, “A lag between temperature and atmospheric CO2 concentration based on a simple coupled model of climate and the carbon cycle,” Dokl. Earth Sci. 463 (2), 863–868 (2015).

    Article  Google Scholar 

  90. V. V. Popova, V. V. Matskovskii, and A. Yu. Mikhailov, “Present-day climate changes in Northern Hemispheric nontropical soils, Vestn. Mosk. Univ. Ser 5: Geogr., No. 1, 3–13 (2018).

  91. V. A. Dergachev, O. M. Raspopov, M. I. Tyasto, P. B. Dmitriev, V. S. Ismagilov, and E. E. Blagoveshchenskaya, “Manifestation of cyclic solar activity in the paleoclimatic parameters ~100–150 Ma ago,” Geomagn. Aeron. (Engl. Transl.) 55 (5), 555–561 (2015).

    Article  Google Scholar 

  92. V. A. Dergachev, “Paleoclimate of the Earth and solar activity,” Geomagn. Aeron. (Engl. Transl.) 57 (5), 524–528 (2017).

    Article  Google Scholar 

  93. G. A. Zherebtsov, V. A. Kovalenko, and K. E. Kirichenko, “The role of solar activity in observed climate changes in the 20th century,” Geomagn. Aeron. (Engl. Transl.) 57 (6), 637–644 (2017).

    Article  Google Scholar 

  94. N. V. Vakulenko, V. M. Kotlyakov, and D. M. Sonechkin, “The connection between the growth of anthropogenic carbon dioxide in the atmosphere and the current climate warming,” Dokl. Earth Sci. 477 (1), 1307–1310 (2017).

    Article  Google Scholar 

  95. P. F. Demchenko and V. A. Semenov, “Estimation of uncertainty in surface air temperature climatic trends related to the internal dynamics of the atmosphere,” Dokl. Earth Sci. 476 (1), 1105–1108 (2017).

    Article  Google Scholar 

  96. I. I. Mokhov, “Assessment of the ability of contemporary climate models to assess adequately the risk of possible regional anomalies and trends,” Dokl. Earth Sci. 479 (2), 482–485 (2018).

    Article  Google Scholar 

  97. P. V. Sporyshev, V. M. Kattsov, and S. K. Gulev, “Changes in surface temperature in the Arctic: Accuracy of model reproduction and probabilistic prediction for the near future,” Dokl. Earth Sci. 479 (2), 503–506 (2018).

    Article  Google Scholar 

  98. E. Volodin and A. Gritsun, “Nature of the decrease in global warming at the beginning of the 21st century,” Dokl. Earth Sci. 482 (1), 1221–1224 (2018).

    Article  Google Scholar 

  99. A. I. Khlystov, R. K. Klige, and B. S. Simkin, “The global warming and its possible causes,” Zemlya Vselennaya, No. 1, 60–70 (2018).

    Google Scholar 

  100. A. M. Sterin and A. A. Timofeev, “Estimation of surface air temperature trends over the Russian Federation territory using the quantile regression method,” Russ. Meteorol. Hydrol. 41 (6), 388–397 (2016).

    Article  Google Scholar 

  101. V. A. Vetrov, O. K. Borisova, and A. A. Velichko, “Long-term projection of main parameters of regional climate till the year 3000,” Russ. Meteorol. Hydrol. 41 (5), 312–334 (2016).

    Article  Google Scholar 

  102. V. V. Babich, A. V. Dar’in, I. A. Kalugin, and L. G. Smolyaninova, “Climate prediction for the extratropical northern hemisphere for the next 500 years based on periodic natural processes,” Russ. Meteorol. Hydrol. 41 (9), 593–600 (2016).

    Article  Google Scholar 

  103. I. A. Korneva and S. M. Semenov, “Surface temperature response to variations in atmospheric albedo: Estimating the radiation effect,” Russ. Meteorol. Hydrol. 41 (5), 307–311 (2016).

    Article  Google Scholar 

  104. A. V. Polyakov, Yu. M. Golovin, V. Deler, D. Ertel’, and D. Shpenkukh, “Comparison of spectra of outgoing thermal IR-radiation for different years,” Issled. Zemli Kosmosa, No. 5, 65–72 (2018).

    Google Scholar 

  105. I. V. Zadvornykh, K. G. Gribanov, V. I. Zakharov, and R. Imasu, “Radiative transfer code for thermal and near infrared with multiple scattering,” Opt. Atmos. Okeana 30 (2), 128–133 (2017).

    Google Scholar 

  106. V. M. Kattsov, I. M. Shkolnik, and S. V. Efimov, “Climate change projections in Russian regions: The detailing in physical and probability spaces,” Russ. Meteorol. Hydrol. 42 (7), 452–460 (2017).

    Article  Google Scholar 

  107. A. G. Ryaboshapko and A. P. Revokatova, “A potential role of the negative emission of carbon dioxide in solving the climate problem,” Russ. Meteorol. Hydrol. 40 (7), 443–455 (2015).

    Article  Google Scholar 

  108. N. V. Vakulenko, R. I. Nigmatullin, and D. M. Sonechkin, “On the problem of the global climate change,” Russ. Meteorol. Hydrol. 40 (9), 629–634 (2015).

    Article  Google Scholar 

  109. T. M. Dmitrieva and V. A. Grabar, “Emissions from Russian domestic civil aviation in 2000–2012 and integrated assessment of their impact on the climate system,” Russ. Meteorol. Hydrol. 42 (8), 538–543 (2017).

    Article  Google Scholar 

  110. Ya. A. Ekba, A. K. Akhsalba, S. A. Lebedev, and M. K. Bedanokov, “Volcanic activity effect on surface air temperature,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 99 [in Russian].

  111. V. N. Lykosov, “Regional aspects of modeling the climate and its changes,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 14 [in Russian].

  112. I. I. Mokhov, “Present-day climate changes: Anomalies and tendencies,” in Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 15 [in Russian].

  113. S. N. Denisov, A. V. Eliseev, I. I. Mokhov, and M. M. Arzhanov, “Model estimates of global and regional atmospheric methane emissions of wetland ecosystems,” Izv., Atmos. Ocean. Phys. 51 (5), 482–487 (2015).

    Article  Google Scholar 

  114. M. M. Arzhanov, I. I. Mokhov, and S. N. Denisov, “Impact of regional climatic change on the stability of relic gas hydrates,” Dokl. Earth Sci. 468 (2), 616–618 (2016).

    Article  Google Scholar 

  115. M. M. Arzhanov, I. I. Mokhov, and S. N. Denisov, “Disruption of relic gas hydrates under observed regional climate changes,” Arkt.: Ekol. Ekon., No. 4, 46–51 (2016).

  116. S. A. Sitnov, I. I. Mokhov, and A. V. Dzhola, “Total content of carbon monoxide in the atmosphere over Russian regions according to satellite data,” Izv., Atmos. Ocean. Phys. 53 (1), 32–48 (2017).

    Article  Google Scholar 

  117. S. A. Sitnov, I. I. Mokhov, and A. V. Dzhola, “Variations of carbon monoxide in the atmosphere during the atmospheric blocking event over European Russia in summer of 2010 (according to AIRS data),” Opt. Atmos. Okeana 30 (3), 214–221 (2017).

    Google Scholar 

  118. M. M. Arzhanov and I. I. Mokhov, “Stability of continental relic methane hydrates for the Holocene climatic optimum and for contemporary conditions,” Dokl. Earth Sci. 476 (2), 1163–1167 (2017).

    Article  Google Scholar 

  119. S. A. Sitnov and I. I. Mokhov, “Anomalies in the atmospheric methane content over Northern Eurasia in the summer of 2016,” Dokl. Earth Sci. 480 (1), 637–641 (2018).

    Article  Google Scholar 

  120. M. M. Arzhanov, V. V. Malakhova, and I. I. Mokhov, “Simulation of the conditions for the formation and dissociation of methane hydrate over the last 130 000 years,” Dokl. Earth Sci. 480 (2), 826–830 (2018).

    Article  Google Scholar 

  121. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, O. A. Krasnov, Sh. Sh. Macsutov, T. Machida, M. Sasakawa, and A. V. Fofonov, “Peculiarities of the vertical distribution of carbon dioxide over Southwestern Siberia in the summer season,” Opt. Atmos. Okeana 31 (8), 670–681 (2018).

    Article  Google Scholar 

  122. I. V. Zadvornykh, K. G. Gribanov, V. I. Zakharov, and R. Imasu, “Methane vertical profile retrieval from the thermal and near-infrared atmospheric spectra,” Atmos. Oceanic Opt. 32 (2), 152–157 (2018).

    Article  Google Scholar 

  123. I. M. Nasrtdinov, T. B. Zhuravleva, and T. Yu. Chesnokova, “Estimation of direct radiative effects of background and smoke aerosol in the IR spectral region for Siberian summer conditions,” Atmos. Oceanic Opt. 31 (3), 317–323 (2018).

    Article  Google Scholar 

  124. A. A. Vinogradova and A. V. Vasileva, “Black carbon in air over northern regions of Russia: Sources and spatiotemporal variations,” Atmos. Oceanic Opt. 30 (6), 533–541 (2017).

    Article  Google Scholar 

  125. V. S. Rakitin, N. F. Elansky, N. V. Pankratova, A. I. Skorokhod, A. V. Dzhola, Yu. A. Shtabkin, P. Wang, G. Wang, A. V. Vasilieva, M. V. Makarova, and E. I. Grechko, “Study of trends of total CO and CH4 contents over Eurasia through analysis of ground-based and satellite spectroscopic measurements,” Atmos. Oceanic Opt. 30 (6), 517–526 (2017).

    Article  Google Scholar 

  126. P. N. Antokhin, O. Yu. Antokhina, M. Yu. Arshinov, B. D. Belan, D. K. Davydov, T. K. Sklyadneva, A. V. Fofanov, M. Sasakawa, and T. Machida, “The impact of atmospheric blocking in Western Siberia on a change in the methane concentration in summer,” Opt. Atmos. Okeana 30 (5), 393–403 (2017).

    Google Scholar 

  127. M. V. Glagolev, D. V. Il’yasov, I. E. Terent’eva, A. F. Sabrekov, O. A. Krasnov, and Sh. Sh. Maksyutov, “Methane and carbon dioxide fluxes in the waterlogged forests of Western Siberian southern and middle taiga subzones,” Opt. Atmos. Okeana 30 (4), 301–309 (2017).

    Google Scholar 

  128. G. I. Gorchakov, A. V. Karpov, A. V. Vasiliev, and I. A. Gorchakova, “Brown and black carbons in megacity smogs,” Atmos. Oceanic Opt. 30 (3), 248–254 (2017).

    Article  Google Scholar 

  129. A. I. Skorokhod, N. V. Pankratova, I. B. Belikov, V. S. Rakitin, Yu. A. Shtabkin, and R. Thompson, “Study of atmospheric methane sources in the Arctic,” Book of Abstracts of the International Conference Devoted o the 100th Anniversary of Academician Aleksandr Mikhailovich Obukhov, 16–18 May 2018 (Fizmatkniga, Moscow, 2018), p. 168 [in Russian].

  130. I. I. Mokhov and D. A. Smirnov, “Contribution of greenhouse gas radiative forcing and Atlantic multidecadal oscillation to surface air temperature trends,” Russ. Meteorol. Hydrol. 43 (9), 557–564 (2018).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-05-00080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Larin.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, I.K. Russian Investigations in Atmospheric Chemistry for 2015–2018. Izv. Atmos. Ocean. Phys. 55, 552–561 (2019). https://doi.org/10.1134/S0001433819060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819060082

Keywords:

Navigation