Skip to main content
Log in

Russian investigations in atmospheric chemistry for 2011–2014

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This review covers the most significant Russian studies in atmospheric chemistry conducted from 2011 to 2014. This is part of the Russian National Report on the Meteorology and Atmospheric Sciences prepared for the International Association of Meteorology and Atmospheric Sciences (IAMAS). The report was considered and approved by the XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG).1 The review is appended by a list of publications by Russian scientists for 2011–2014 covering the field of atmospheric chemistry research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. K. Larin, “Russian investigations in atmospheric chemistry for 2007–2010,” Izv., Atmos. Ocean. Phys. 48 (3), 272–280 (2012).

    Article  Google Scholar 

  2. I. K. Larin, A. I. Spasskii, and E. M. Trofimova, “Measurement of the rate constants of the reactions of the chlorine atom with C3F7I and CF3I using the resonance fluorescence of chlorine atoms,” Kinet. Catal. 53 (1), 13–18 (2012).

    Article  Google Scholar 

  3. I. K. Larin, A. I. Spasskii, and E. M. Trofimova, “Homogeneous and heterogenous reactions of carbons containing iodine atom,” Izv. Ross. Akad. Nauk, Energ., No. 3, 44–52 (2012).

    Google Scholar 

  4. I. K. Larin, A. I. Spasskii, E. M. Trofimova, and N. G. Proncheva, “Measuring the rate constant of the reaction between carbon monoxide and iodine oxide at 298–363 K by the resonance fluorescence method,” Kinet. Catal. 55 (3), 287–292 (2014).

    Article  Google Scholar 

  5. E. S. Vasiliev, V. D. Knyazev, G. V. Karpov, and I. I. Morozov, “Kinetics and mechanism of the reaction of fluorine atoms with pentafluoropropionic pentafluoropropionic acid,” J. Phys. Chem. A 118, 4013–4018 (2014).

    Article  Google Scholar 

  6. E. S. Vasiliev, V. D. Knyazev, and I. I. Morozov, “Kinetics and mechanism of the reaction of fluorine atoms with trifluoroacetic acid,” Chem. Phys. Lett. 512, 172–177 (2011).

    Article  Google Scholar 

  7. Yong Liu, A. V. Ivanov, V. V. Zelenov, and M. J. Molina, “Temperature dependence of OH uptake by carbonaceous surfaces of atmospheric importance,” Russ. J. Phys. Chem. B 6 (2), 327–331 (2012).

    Article  Google Scholar 

  8. B. E. Krisyuk and A. V. Maiorov, “Quantum chemical study of the primary step of ozone addition at the double bond of ethylene,” Kinet. Catal. 52 (6), 798–804 (2011).

    Article  Google Scholar 

  9. B. E. Krisyuk, A. V. Maiorov, E. A. Mamin, and A. A. Popov, “Quantum chemical study of the addition of ozone to acetylene,” Kinet. Catal. 54 (3), 290–296 (2013).

    Article  Google Scholar 

  10. B. E. Krisyuk, A. V. Maiorov, E. A. Mamin, and A. A. Popov, “Effect of the deformation of the double bond in chlorinated ethylene on the rate and mechanism of the reaction with ozone,” Russ. J. Phys. Chem. B 5 (3), 465–473 (2011).

    Article  Google Scholar 

  11. B. E. Krisyuk and A. V. Maiorov, “Competition between the concerted and nonconcerted addition of ozone to a double bond,” Russ. J. Phys. Chem. B 5 (5), 790–796 (2011).

    Article  Google Scholar 

  12. B. E. Krisyuk, A. V. Maiorov, V. A. Ovchinnikov, and A. A. Popov, “Reaction of ozone with butene: Multiconfiguration computing,” Khim. Fiz. 32 (1), 3–8 (2013).

    Google Scholar 

  13. A. E. Galashev, “A computer study of ammonium adsorption on water clusters,” Russ. J. Phys. Chem. B 7 (4), 502–508 (2013).

    Article  Google Scholar 

  14. A. E. Galashev, “Structure of water clusters with captured methane molecules,” Russ. J. Phys. Chem. B 8 (6), 793–800 (2014).

    Article  Google Scholar 

  15. I. B. Belikov, E. V. Gorbarenko, I. D. Eremina, et al., “Chemical composition of atmospheric precipitation in 2010,” in Environmental–climatic characteristics of the atmosphere in 2010 according to data of the MSU meteorological observatory, Ed. by N. E. Chubarova (MAKS Press, Moscow, 2011), pp. 137–141 [in Russian].

    Google Scholar 

  16. E. V. Gorbarenko and I. D. Eremina, “Variability of aerosols and chemical composition of in the Moscow air,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 4, 31–42 (2011).

    Google Scholar 

  17. I. B. Belikov, E. V. Gorbarenko, A. S. Elokhov, et al., “Chemical composition of atmospheric precipitation in 2011,” in Environmental–climatic characteristics of the atmosphere in 2011 according to data of the MSU meteorological observatory, Ed. by N. E. Chubarova (MAKS Press, Moscow, 2012), pp. 165–172 [in Russian].

    Google Scholar 

  18. I. B. Belikov, E. V. Gorbarenko, A. S. Elokhov, et al., “Spatial regularities of the chemical composition of snow cover in Moscow and its vicinities,” in Environmental–climatic characteristics of the atmosphere in 2011 according to data of the MSU meteorological observatory, Ed. by N. E. Chubarova (MAKS Press, Moscow, 2012), pp. 221–230 [in Russian].

    Google Scholar 

  19. I. D. Eremina, “30-year observations over the chemical composition of atmospheric precipitation at the MSU meteorological observatory,” in Proceedings of the International Scientific Conference Regional Effects of Global Climate Changes (Causes, Consequences, and Forecasts) (Nauchnaya kniga, Voronezh, 2012), pp. 484–487 [in Russian].

    Google Scholar 

  20. I. B. Belikov, E. V. Gorbarenko, I. D. Eremina, et al., “Chemical composition of atmospheric precipitation in 2012,” in Environmental–climatic characteristics of the atmosphere in 2012 according to data of the MSU meteorological observatory, Ed. by N. E. Chubarova (MAKS Press, Moscow, 2013), pp. 131–137 [in Russian].

    Google Scholar 

  21. E. V. Gorbarenko, I. D. Eremina, A. A. Isaev, and A. G. Gamburtsev, “Dynamics of some environmental–climatic characteristics of the atmosphere in Moscow (according to data of the MSU meteorological observatory),” in Atlas of Temporal Variations in Natural, Anthropogenic, and Social Processes (Yanus-K, Moscow, 2013), Vol. 5, pp. 78–93.

    Google Scholar 

  22. I. D. Eremina, “Monitoring of the chemical composition of atmospheric precipitation according to observations at the MSU meteorological observatory,” Al’tern. Energ. Ekol., No. 6, 10–17 (2013).

    Google Scholar 

  23. I. D. Eremina, “Variations in acidity and chemical composition of atmospheric precipitation in Moscow for 30 years,” in Proceedings of the Conference “Urban Atmospheric Pollution” (GTO, St. Petersburg, 2013), pp. 115–117 [in Russian].

    Google Scholar 

  24. I. B. Belikov, E. V. Gorbarenko, I. D. Eremina, et al., “Chemical composition of atmospheric precipitation in 2013,” in Environmental–climatic characteristics of the atmosphere in 2013 according to data of the MSU meteorological observatory, Ed. by N. E. Chubarova (MAKS Press, Moscow, 2014) [in Russian].

    Google Scholar 

  25. I. D. Eremina, N. E. Chubarova, L. I. Alekseeva, and G. V. Surkova, “Acidity and chemical composition of precipitation in the Moscow region in the warm period of the year,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 5, 3–11 (2014).

    Google Scholar 

  26. O. G. Netsvetaeva, N. A. Onishchuk, E. A. Zimnik, et al., “Dynamics of the chemical composition of the precipitation in the Baikal region,” Opt. Atmos. Okeana 25 (6), 507–512 (2012).

    Google Scholar 

  27. N. V. Pankratova, N. F. Elansky, I. B. Belikov, et al., “Ozone and nitric oxides in the surface air over Northern Eurasia according to observational data obtained in TROICA experiments,” Izv., Atmos. Ocean. Phys. 47 (3), 313–328 (2011).

    Article  Google Scholar 

  28. N. F. Elanskii, I. I. Mokhov, I. B. Belikov, et al., “Gaseous admixtures in the atmosphere over Moscow during the 2010 summer,” Izv., Atmos. Ocean. Phys. 47 (6), 672–681 (2011).

    Article  Google Scholar 

  29. V. N. Aref’ev, F. V. Kashin, L. I. Milekhin, et al., “Concentration of surface ozone, Obninsk, 2004–2010,” Izv., Atmos. Ocean. Phys. 49 (1), 66–76 (2013).

    Article  Google Scholar 

  30. I. K. Larin, “The mechanism of methane oxidation in the troposphere,” Ekol. Khim. 20 (2), 65–73 (2011).

    Google Scholar 

  31. I. K. Larin, “Chemistry of the nocturnal troposphere. 1. Processes involving nitrogen oxides,” Ekol. Khim. 20 (3), 155–162 (2011).

    Google Scholar 

  32. I. K. Larin, “Chemistry of the nocturnal troposphere. 2. Processes involving organic compounds,” Ekol. Khim. 20 (3), 163–172 (2011).

    Google Scholar 

  33. I. K. Larin and M. L. Kuskov, “Diurnal and nocturnal lifetimes of atmospheric trace gases in the troposphere,” Khim. Fiz. 33 (4), 85–90 (2014).

    Google Scholar 

  34. A. M. Zvyagintsev, I. N. Kuznetsova, and G. I. Kuznetsov, “The evolution of spring Antarctic ozone anomaly,” Opt. Atmos. Okeana 25 (7), 580–583 (2012).

    Google Scholar 

  35. A. A. Cheremisin, V. N. Marichev, and P. V. Novikov, “Transport of polar stratospheric clouds from the Arctic to Tomsk in January 2010,” Atmos. Oceanic Opt. 26 (6), 492–498 (2013).

    Article  Google Scholar 

  36. T. B. Tsyrkina, L. A. Obvintseva, I. P. Sukhareva, et al., “Ozone destruction on white sand. Determination of kinetic and stationary characteristics,” in Proceedings of the 16th Conference–School of Young Scientists “Atmospheric Structure. Atmospheric Electricity. Climatic Effects” (Institute of Atmospheric Physics, Zvenigorod, 2012), pp. 209–211.

    Google Scholar 

  37. P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, et al., “Prediction of changes in ozone and aerosol concentrations on the basis of predicted solar activity level in cycle 24,” Opt. Atmos. Okeana 25 (9), 778–783 (2012).

    Google Scholar 

  38. V. V. Zelenov and E. V. Aparina, “Formation of chemically active haloids in the lower troposphere in heterogeneous reactions of NO3 and ClNO3 with marine aerosol,” Izv. Ross. Akad. Nauk, Energ., No. 3, 26–43 (2012).

    Google Scholar 

  39. V. V. Zelenov and E. V. Aparina, “Heterogeneous source of chlorine in the atmosphere,” in Chlorine: Properties, Applications and Health Effect, Ed. by R. Mangione and D. Carlyle (Nova Science, New York, 2012), pp. 55–124. https://www.novapublishers.com/catalog/productinfo. php?products_id=35125.

    Google Scholar 

  40. G. V. Karpov and I. I. Morozov, “Hydratation of negative ions of trichloroacetic acid in water solutions,” in Proceedings of the 16th Conference–School of Young Scientists “Atmospheric Structure. Atmospheric Electricity. Climatic Effects” (Zvenigorod, IFA RAN, 2012), pp. 47–51 [In Russian].

    Google Scholar 

  41. N. O. Plaude, E. A. Stulov, I. P. Parshutkina, et al., “Peculiarities of seasonal variations of atmospheric aerosol concentration in the surface air of Moscow environs,” Russ. Meteorol. Hydrol. 37 (1), 21–27 (2012).

    Article  Google Scholar 

  42. S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Investigation of the vertical distribution of tropospheric aerosol layers using the data of multiwavelength lidar sensing. Part 3. Spectral peculiarities of the vertical distribution of the aerosol optical characteristics,” Atmos. Oceanic Opt. 25 (3), 208–215 (2011).

    Article  Google Scholar 

  43. V. V. Pol’kin, V. S. Kozlov, Yu. S. Turchinovich, and V. P. Shmargunov, “Comparative analysis of microphysical aerosol characteristics in marine and coastal regions of Primorye,” Opt. Atmos. Okeana 24 (6), 538–546 (2011).

    Google Scholar 

  44. S. A. Sitnov, “Analysis of satellite observations of aerosol optical properties and gaseous species over central district of Russian Federation in the period of abnormally high summer temperature and mass wild fires in 2010,” Opt. Atmos. Okeana 24 (7), 572–581 (2011).

    Google Scholar 

  45. V. V. Pol’kin and L. P. Golobokova, “A comparative analysis of aerosol chemical composition in complex experiments in Primorye,” Atmos. Oceanic Opt. 24 (6), 554–565 (2011).

    Article  Google Scholar 

  46. K. P. Kutsenogii, P. K. Kutsenogii, and A. I. Levykin, “Simulation of the distribution of nanoand submicron-size aerosol particles,” Opt. Atmos. Okeana 24 (9), 743–753 (2011).

    Google Scholar 

  47. A. A. Vinogradova and A. O. Veremeichik, “Model estimates for the anthropogenic black carbon content in the atmosphere over the Russian Arctic,” Opt. Atmos. Okeana 26 (6), 443–451 (2013).

    Google Scholar 

  48. G. S. Zhamsueva, A. S. Zayakhanov, A. V. Starikov, et al., “Results of investigations of aerosol ion composition in the atmosphere over Mongolia,” Opt. Atmos. Okeana 26 (6), 472–477 (2013).

    Google Scholar 

  49. P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, e al., “Large-scale studies of gas and aerosol composition of air over the Siberian region,” Opt. Atmos. Okeana 27 (3), 232–239 (2014).

    Google Scholar 

  50. T. A. Maksimova, A. A. Maskaeva, G. G. Dul’tseva, and S. N. Dubtsov, “Biogenic organic compounds as a vertically distributed source of atmospheric aerosol over West Siberian forests,” Opt. Atmos. Okeana 27 (6), 515–519 (2014).

    Google Scholar 

  51. A. A. Vinogradova, “Anthropogenic black carbon emissions to the atmosphere: Surface distribution through Russian territory,” Atmos. Oceanic Opt. 28 (2), 158–164 (2014).

    Article  Google Scholar 

  52. M. P. Tentyukov, “Studying the radionuclide distribution in the dry aerosol sink in forest ecosystems,” Russ. Meteorol. Hydrol. 37 (3), 177–183 (2012).

    Article  Google Scholar 

  53. G. S. Zhamsueva, A. S. Zayakhanov, A. V. Starikov, et al., “Chemical composition of aerosols in the atmosphere of Mongolia,” Russ. Meteorol. Hydrol. 37 (8), 546–552 (2012).

    Article  Google Scholar 

  54. V. A. Zagainov, S. F. Timashev, Yu. G. Biryukov, et al., “Dynamic state of the atmosphere in aerosol components,” Russ. J. Phys. Chem. B 6 (1), 89–99 (2012).

    Article  Google Scholar 

  55. M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, et al., “Reconstruction of optical characteristics of tropospheric aerosol in West Siberia on the basis of a generalized empirical model taking into account the absorbing and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).

    Google Scholar 

  56. A. E. Aloyan, V. O. Arutyunyan, and A. N. Ermakov, “Dynamics of gaseous species and aerosols during forest and peat fires,” in Proceedings of the 16th Conference–School of Young Scientists “Atmospheric Structure. Atmospheric Electricity. Climatic Effects” (Institute of Atmospheric Physics, Zvenigorod, 2012), pp. 5–9.

    Google Scholar 

  57. I. N. Kuznetsova, “The effect of meteorology on air pollution in Moscow during the summer episodes of 2010,” Izv., Atmos. Ocean. Phys. 48 (5), 504–515 (2012).

    Article  Google Scholar 

  58. I. B. Konovalov, M. Bikmann, I. N. Kuznetsova, et al., “Estimation of the influence that natural fires have on air pollution in the region of Moscow megalopolis based on the combined use of chemical transport model and measurement data,” Izv., Atmos. Ocean. Phys. 47 (4), 457–467 (2011).

    Article  Google Scholar 

  59. G. I. Gorchakov, E. G. Semutnikova, A. A. Isakov, et al., “Moscow smoke haze in the 2010 summer. Extreme aerosol and gaseous air pollution of the Moscow region,” Opt. Atmos. Okeana 24 (6), 452–458 (2011).

    Google Scholar 

  60. M. Yu. Arshinov and B. D. Belan, “Analysis of aerosolsize distribution during spring haze and forest fires,” Opt. Atmos. Okeana 24 (6), 468–477 (2011).

    Google Scholar 

  61. A. A. Isakov, P. P. Anikin, A. S. Elokhov, and G. A. Kurbatov, “On characteristics of smokes of forest and peat fires in central Russia in summer of 2010,” Opt. Atmos. Okeana 24 (6), 478–482 (2011).

    Google Scholar 

  62. M. A. Bizin, S. A. Popova, O. V. Chankina, et al., “The effect of forest fires on mass concentration, disperse and chemical composition of atmospheric aerosols on a regional scale,” Opt. Atmos. Okeana 26 (6), 484–489 (2013).

    Google Scholar 

  63. G. V. Surkova, D. V. Blinov, A. A. Kirsanov, et al., “Simulation of spread of air pollution plumes from forest fires with the use of COSMO-Ru7-ART chemicaltransport model,” Atmos. Oceanic Opt. 27 (3), 268–274 (2014).

    Article  Google Scholar 

  64. R. F. Rakhimov, V. S. Kozlov, M. V. Panchenko, et al., “Properties of atmospheric aerosol in smoke plumes from forest fires according to spectronephelometer measurements,” Atmos. Oceanic Opt. 27 (3), 275–282 (2014).

    Article  Google Scholar 

  65. V. N. Marichev and I. V. Samokhvalov, “Lidar observations of aerosol volcanic layers in stratosphere of Western Siberia in 2008–2010,” Opt. Atmos. Okeana 24 (3), 224–231 (2011).

    Google Scholar 

  66. S. A. Lysenko and M. M. Kugeiko, “Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing,” Atmos. Oceanic Opt. 24 (5), 466–477 (2011).

    Article  Google Scholar 

  67. S. I. Dolgii, V. D. Burlakov, A. P. Makeev, et al., “Aerosol disturbances of the stratosphere after the Grimsvotn (Iceland, May 2011) volcanic eruption according to observational data of the CIS-LiNet network of lidar stations in Minsk, Tomsk, and Vladivostok,” Opt. Atmos. Okeana 26 (7), 547–552 (2013).

    Google Scholar 

  68. V. V. Zuev, N. E. Zueva, and E. S. Savel’eva, “A volcanogenic intensification factor of stratosphere–troposphere exchange,” Atmos. Oceanic Opt. 27 (2), 195–199 (2014).

    Article  Google Scholar 

  69. E. S. Savel’eva and V. V. Zuev, “Effect of volcanic emission on the destruction of ozone layer in spring over Antarctica,” in Proceedings of the 16th Conference–School of Young Scientists “Atmospheric Structure. Atmospheric Electricity. Climatic Effects” (Institute of Atmospheric Physics, Zvenigorod, 2012), pp. 169–172.

    Google Scholar 

  70. A. A. Toropov, V. I. Kozlov, V. A. Mullayarov, and S. A. Starodubtsev, “Vspleski neitronov svyazannye s molnievymi razryadami oblako-zemlya,” in Proceedings of the 16th Conference–School of Young Scientists “Atmospheric Structure. Atmospheric Electricity. Climatic Effects” (Zvenigorod, IFA RAN, 2012), pp. 199–201 [In Russian].

    Google Scholar 

  71. S. P. Smyshlyaev, E. A. Mareev, V. Ya. Galin, and P. A. Blakitnaya, “Simulating indirect effects that thunderstorm activity has on atmospheric temperature,” Izv., Atmos. Ocean. Phys. 49 (5), 504–518 (2013).

    Article  Google Scholar 

  72. V. V. Zuev and N. E. Zueva, “Volcanogenic disturbances in the stratosphere are the major regulator of long-term behavior of the ozonosphere from 1979 to 2008,” Opt. Atmos. Okeana 24 (1), 30–34 (2011).

    Article  Google Scholar 

  73. A. N. Gruzdev, “Estimate of the effects of Pinatubo eruption in stratospheric O3 and NO2 contents taking into account the variations in the solar activity,” Atmos. Oceanic Opt. 27 (5), 403–411 (2014).

    Article  Google Scholar 

  74. I. K. Larin, “On the chain length in main cycles of stratospheric ozone depletion,” in Proceedings of the 16th Conference–School of Young Scientists “Atmospheric Structure. Atmospheric Electricity. Climatic Effects” (Zvenigorod, IFA RAN, 2012), pp. 35–39 [In Russian].

    Google Scholar 

  75. I. K. Larin and M. L. Kuskov, “Mechanisms of stratospheric ozone depletion. 1. On chain processes in the stratosphere,” Russ. J. Phys. Chem. B 7 (4), 509–513 (2013).

    Article  Google Scholar 

  76. I. K. Larin and M. L. Kuskov, “Mechanisms of stratospheric ozone depletion. 2. Chain length and the rate of ozone depletion in the main stratospheric cycles,” Russ. J. Phys. Chem. B 7 (5), 580–588 (2013).

    Article  Google Scholar 

  77. I. Larin, “On the chain length and rate of ozone depletion in the main stratospheric cycles,” Atmos. Clim. Sci. 3 (1), 141–149 (2013).

    Google Scholar 

  78. S. M. Lisitsa, “Influence of solar proton events on the ozonosphere,” in Proceedings of the 16th Conference–School of Young Scientists “Atmospheric Structure. Atmospheric Electricity. Climatic Effects” (Institute of Atmospheric Physics, Zvenigorod, 2012), pp. 134–137.

    Google Scholar 

  79. V. G. Ryskin, I. I. Zinchenko, A. A. Krasil’nikov, et al., “Stratospheric ozone distribution features from the results of simultaneous ground-based microwave measurements in Nizhni Novgorod and Kyrgyzstan,” Russ. Meteorol. Hydrol. 37 (10), 659–665 (2012).

    Article  Google Scholar 

  80. O. E. Bazhenov, “Estimating the impact of humidity and temperature on the formation of ozone anomaly in spring 2011 in the Arctic and over northern Russia,” Opt. Atmos. Okeana 25 (7), 589–593 (2012).

    Google Scholar 

  81. V. A. Zubov, E. V. Rozanov, I. V. Rozanova, et al., “Simulation of changes in global ozone and atmospheric dynamics in the 21st century with the chemistry–climate model SOCOL,” Izv., Atmos. Ocean. Phys. 47 (3), 301–312 (2011).

    Article  Google Scholar 

  82. I. K. Larin, Chemical Physics of the Ozone Layer (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  83. A. V. Eliseev, “Climate change mitigation via sulfate injection to the stratosphere: Impact on the global carbon cycle and terrestrial biosphere,” Atmos. Oceanic Opt. 25 (6), 405–413 (2012).

    Article  Google Scholar 

  84. E. M. Volodin, S. V. Kostrykin, and A. G. Ryaboshapko, “Simulation of climate change induced by injection of sulfur compounds into the stratosphere,” Izv., Atmos. Ocean. Phys. 47 (4), 430–439 (2011).

    Article  Google Scholar 

  85. I. L. Karol’, A. A. Kiselev, E. L. Genikhovich, and S. S. Chicherin, “Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation,” Izv., Atmos. Ocean. Phys. 49 (5), 461–478 (2013).

    Article  Google Scholar 

  86. A. V. Mikhalev, “Airglow and variations in the atmosphere–ocean climate system,” Atmos. Oceanic Opt. 25 (3), 224–227 (2012).

    Article  Google Scholar 

  87. A. V. Eliseev and I. I. Mokhov, “Solar activity effect on climate: possible impact mechanisms and simulation results,” in Proceedings of the 16th Conference–School of Young Scientists “Atmospheric Structure. Atmospheric Electricity. Climatic Effects” (Zvenigorod, IFA RAN, 2012), pp. 25–28 [In Russian].

    Google Scholar 

  88. B. D. Belan and G. M. Krekov, “The effect of anthropogenic factor on the content of greenhouse gases in the troposphere. 1. Methane,” Opt. Atmos. Okeana 25 (4), 361–373 (2012).

    Google Scholar 

  89. V. V. Malakhova, “Methane hydrates as a possible source of methane in a glacial–interglacial cycle,” Opt. Atmos. Okeana 24 (1), 84–87 (2011).

    Google Scholar 

  90. I. M. Nasrtdinov, T. B. Zhuravleva, and S. M. Sakerin, “Estimates of the aerosol radiative forcing for three regions of World Ocean,” Atmos. Oceanic Opt. 26 (6), 517–523 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Larin.

Additional information

Original Russian Text © I.K. Larin, 2016, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 2, pp. 167–174.

Russian National Report, Meteorology and Atmospheric Sciences, 2011–2014, I.I. Mokhov and A.A. Krivolutsky, Eds. (National Geophysical Committee RAS, MAX Press, Moscow, 2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, I.K. Russian investigations in atmospheric chemistry for 2011–2014. Izv. Atmos. Ocean. Phys. 52, 147–153 (2016). https://doi.org/10.1134/S0001433816020079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816020079

Keywords

Navigation