Skip to main content
Log in

Nonlinear Gravitational Waves and Atmospheric Instability

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

This is an outline of the main results of the study of dust devils (a type of atmospheric vortices) with a focus on the mechanism of vortex generation in an unstable stratified atmosphere. In the approximation of ideal hydrodynamics, a new nonlinear model of the generation of convective motions and dust devils in an unstable stratified atmosphere has been developed. Using nonlinear equations for internal gravity waves, the model of generation of convective cell plumes has been investigated in the axially symmetric approximation. It has been shown that, in a convectively unstable atmosphere with large-scale seed vorticity, the plumes extremely rapidly generate small-scale intense vertical vortices. The structure of radial, vertical, and toroidal velocity components in these vortices has been investigated. The structure of vertical vorticity and toroidal velocity in vortex areas that are limited by radius has been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Balme, M. and Greeley, R., Dust devils on Earth and Mars, Rev. Geophys., 2006, vol. 44, RG3003. doi 10.1029/ 2005RG000188

    Article  Google Scholar 

  2. Bluestein, H.B., Weiss, C.C., and Pazmany, A.L., Doppler radar observations of dust devils in Texas, Mon. Weather Rev., 2004, vol. 132, pp. 209– 224.

    Article  Google Scholar 

  3. Dutton, J.A., Dynamics of Atmospheric Motions, New York: Dover, 1986.

    Google Scholar 

  4. Fritts, D.C. and Alexander, M., Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 2003, vol. 41, no. 1, pp. 1003–1065. doi 10.1029/ 2001RG000106

    Article  Google Scholar 

  5. Jickells, T.D., Nutrient biogeochemistry of the coastal zone, Science, 1998, vol. 281, no. 5374, pp. 217–222. doi 10.1126/science.281.5374.217

    Article  Google Scholar 

  6. Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., and Torres, R., Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 2005, vol. 308, no. 5718, pp. 67–71. doi 10.1126/science.1105959

    Article  Google Scholar 

  7. Kurgansky, M.V., A simple model of dry convective helical vortices (with applications to the atmospheric dust devil), Dyn. Atmos. Oceans, 2005, vol. 40, pp. 151–162.

    Article  Google Scholar 

  8. Kurgansky, M., Lorenz, R., Renno, N., Takemi, T., Wei,  W., and Gu, Z., Dust devil steady-state structure from a fluid dynamics perspective, Space Sci. Rev., 2016, vol. 203, nos. 1–4, pp. 209–244.

    Article  Google Scholar 

  9. Mahowald, N., Ward, D.S., Kloster, S., Flanner, M.G., Heald, C.L., Heavens, N.G., Hess, P.G., Lamarque, J.-F., and Chuang, P.Y., Aerosol impacts on climate and biogeochemistry, Ann. Rev. Environ. Res., 2011, vol. 36, pp. 45–74.

    Article  Google Scholar 

  10. Mitchell, N.J. and Howells, V.S.C., Vertical velocities associated with gravity waves measured in the mesosphere and lower thermosphere with the EISCAT VLF radar, Ann. Geophys., 1998, vol. 16, pp. 1367–1379. doi 10.1007/s00585-998-1367-0

    Article  Google Scholar 

  11. Oke, A.M.C., Tapper, N.J., and Dunkerley, D., Willy-willies in the Australian landscape: The role of key meteorological variables and surface conditions in defining frequency and spatial characteristics, J. Arid Environ., 2007, vol. 71, pp. 201–215.

    Article  Google Scholar 

  12. Onishchenko, O.G. and Pokhotelov, O.A., Generation of zonal structures by internal gravity waves in the Earth’s atmosphere, Dokl. Earth Sci., 2012, vol. 445, no. 1, pp. 845–848.

    Article  Google Scholar 

  13. Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Generation of large-scale eddies and zonal winds in planetary atmospheres, Phys.-Usp., 2008, vol. 51, no. 6, pp. 577–590.

    Article  Google Scholar 

  14. Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Eddies of internal gravity waves in the atmosphere with zonal wind, Sovrem. Probl. Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 187–191.

    Google Scholar 

  15. Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Convective cells of inner gravity waves in the Earth’s atmosphere with zonal wind, Geofiz. Issled., 2013a, vol. 14, no. 3, pp. 5–9.

    Google Scholar 

  16. Onishchenko, O., Pokhotelov, O., and Fedun, V., Convective cells of inertial gravity waves in the Earth’s atmosphere with finite temperature gradient, Ann. Geophys., 2013b, vol. 31, pp. 459–462. doi 10.5194/angeo-31-459-2013

    Article  Google Scholar 

  17. Onishchenko, O.G., Horton, W., Pokhotelov, O.A., and Stenflo, L., Dust devil generation, Phys Scr., 2014a, vol. 89, no. 7, p. 075606.

    Article  Google Scholar 

  18. Onishchenko, O.G., Pokhotelov, O.A., Horton, W., Smolyakov, A.I., Kaladze, T.D., and Fedun, V.N., Rolls of the internal gravity waves in the Earth’s atmosphere, Ann. Geophys., 2014b, vol. 32, pp. 181–186. doi 10.5194/angeo-32-181-2014

    Article  Google Scholar 

  19. Onishchenko, O.G., Pokhotelov, O.A., and Fedun, V., Convection cells of internal gravity waves in the terrestrial atmosphere, Dokl. Earth Sci., 2014c, vol. 454, no. 1, pp. 37–39.

    Article  Google Scholar 

  20. Onishchenko, O.G., Pokhotelov, O.A., and Astaf’eva, N.M., Convective cells of inertial gravity waves in the vicinity of the mesopause, Geofiz. Issled., 2015a, vol. 16, no. 3, pp. 5–11.

    Google Scholar 

  21. Onishchenko, O.G., Pokhotelov, O.A., and Horton, W., Dust devil dynamics in the internal vortex region, Phys. Scr., 2015b, vol. 90, p. 068004. doi 10.1088/0031-8949/90/6/068004

    Article  Google Scholar 

  22. Onishchenko, O.G., Pokhotelov, O.A., Horton, W., and Fedun, V., Explosively growing vortices of unstably stratified atmosphere, J. Geophys. Res.: Atmos., 2016, vol. 121, pp. 7197–7214. doi 10.1002/2016JD025961

    Google Scholar 

  23. Rafkin, S., Jemmett-Smith, B., Fenton, L., Lorenz, R., Takemi, T., Ito, J., and Tyler, D., Dust devil formation, Space Sci. Rev., 2016, vol. 203, nos. 1–4, pp. 183–207.

    Article  Google Scholar 

  24. Ramanathan, V., Crutzen, P.J., Kiehl, J.T., and Rosenfeld, D., Atmosphere: Aerosols, climate, and the hydrological cycle, Science, 2001, vol. 294, pp. 2119–2124.

    Article  Google Scholar 

  25. Renno, N.O., Burkett, M.L., and Larkin, M.P., A simple thermodynamical theory for dust devils, J. Atmos. Sci., 1998, vol. 55, pp. 3244–3252. doi 10.1175/1520-469

    Article  Google Scholar 

  26. Renno, N.O., Nash, A.A., Lunine, J., and Murphy, J., Martian and terrestrial dust devils: Test of a scaling theory using pathfinder data, J. Geophys. Res., 2000, vol. 105, pp. 1859–1865.

    Article  Google Scholar 

  27. Renno, N.O., Abreu, V.J., Koch, J., Smith, P.H., Hartogensis, O.K., Henk, A.R.De., Bruin, H.A.R., Burose, D., Delory, G.T., Farrell, W.M., Watts, C.J., Garatuza, J., Parker, M., and Carswell, A., MATADOR 2002: A pilot field experiment on convective plumes and dust devils, J. Geophys. Res., 2004, vol. 109, E07001. doi 10.1029/2003JE002219

    Article  Google Scholar 

  28. Sinclair, P.C., Some preliminary dust devil measurements, Mon. Weather Rev., 1964, vol. 22, no. 8, pp. 363–367.

    Article  Google Scholar 

  29. Sinclair, P.C., General characteristics of dust devils, J. Appl. Meteorol., 1969, vol. 8, pp. 32–45.

    Article  Google Scholar 

  30. Sinclair, P.C., The lower structure of dust devils, J. Atmos. Sci., 1973, vol. 30, pp. 1599–1619. doi 10.1175/1520-469

    Article  Google Scholar 

  31. Tegen, I., Lacis, A.A., and Fung, I., The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 1996, vol. 380, pp. 419–422.

    Article  Google Scholar 

  32. Yuan, L. and Fritts, D.C., Influence of a mean shear on the dynamical instability of an inertio–gravity wave, J. Atmos. Sci., 2004, vol. 46, pp. 2562–2568.

    Article  Google Scholar 

  33. Zhao, Y.Z., Gu, Z.L., Yu, Y.Z., Ge, Y., Li, Y., and Feng, X., Mechanism and large eddy simulation of dust devils, Atmos.-Ocean, 2004, vol. 42, no. 1, pp. 61–84. doi 10.3137/ao.420105

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Presidium of the Russian Academy of Sciences, program no. 28, within the state task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. G. Onishchenko, O. A. Pokhotelov or N. M. Astafieva.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishchenko, O.G., Pokhotelov, O.A. & Astafieva, N.M. Nonlinear Gravitational Waves and Atmospheric Instability. Izv. Atmos. Ocean. Phys. 54, 1423–1429 (2018). https://doi.org/10.1134/S0001433818100079

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818100079

Keywords:

Navigation