Skip to main content
Log in

Constructing the Optimal Model of the Geoelectric Section Using Vertical Electrical Sounding Data: Case Study of the Central Part of the Garm Research Area

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In geophysical studies, particularly when searching for precursors of earthquakes, there are problems of investigating the geoelectric structure of the medium at the observation point and its changes over time. This paper develops an approach to solving these problems based on the long-term medium monitoring data using the vertical electrical sounding (VES) method. The sounding was carried out daily for 12 years (from April 1979 to May 1992) in the central part of the Garm research area using a stationary multielectrode array. The data are used to construct about 4000 individual VES curves, which are then used to construct 36 10-day average curves for solving the inverse problem within a horizontally layered model using the IPI package. Four-, five-, six-, and seven-layer models of the geoelectric section are constructed based on the interpretation of the solutions. These models are compared by different criteria of their quality. As a result, a four-layer model is selected, which can be considered the best in the sense of minimizing the residual of the solution of the inverse problem, a horizontally layered approximation of the real (average for the seasons of the year) geoelectric section. A comparison of the available geological and geophysical data with each other and with the results of solving the VES inverse problem shows that the four-layer model of the section is in good agreement with the data of geological (drilling, geological mapping), geoelectric (transient electromagnetic sounding (TEM), profile VES), and other studies performed at the observation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. V.K. Khmelevskoi and V.A. Shevnin (1988) recommend combining layers with the contribution Ck < 1 for any value of parameter Gk, which characterizes the degree of contrast (angle of the break of the VES curve) at the boundary of the layers. The layers with contribution Ck = 1 should be merged at the values of contrast parameter Gk > 0.98 and the layers with contribution Ck = 3 at the values of contrast Gk > 0.96. These numbers were obtained by the authors of this paper proceeding from the usual condition in field practice that changes in the VES curve should not exceed 3–5% after merging of the layers.

  2. Mostly dense light gray fine-grained (nonferruginous) limestone.

  3. Lower Cretaceous red (ferruginous) sandstones, siltstones, and clay rocks are found on the Peter the First Range. Reddish gray, possibly carbonate, sandstones are found among the Upper Cretaceous carbonate rocks in the area of the village of Khazor-Chashma. Apparently, they were formed as a result of erosion and redeposition of lower Cretaceous red terrigenous rocks.

REFERENCES

  1. Barsukov, O.M. and Sorokin, O.N., Variations in apparent resistivity of rocks in the seismically active Garm region, Izv. Akad. Nauk SSSR: Fiz. Zemli, 1973, no. 10, pp. 100–102.

  2. Barsukov, O.M., Krasnyuk, P.D., Listov, N.A., and Sorokin, O.N., Approximate estimate for earthquake preparation area size according to measured electric resistance of a rock massif, in Predvestniki Zemletryasenii (Earthquake Precursors), Moscow: VINITI, 1973, pp. 207–214.

  3. Bektemirov, A.I. and Romanov, V.P., Regular electrometric observations on the Frunze prognostic polygon, Prognoz Zemletryasenii, 1988, no. 9, pp. 95–108.

  4. Bogdanov, M.I., Kalinin, V.V., and Modin, I.N., Use of high-precision low-frequency electric exploration systems for long-term monitoring of dangerous engineering–geological processes, Inzh. Izyskaniya, 2013, nos. 10–11, pp. 110–115.

  5. Bonchkovskii, V.F., Variation in the gradient of electric potential of the atmosphere as a possible earthquake precursor, Tr. Geofiz. Inst. Akad. Nauk SSSR, 1954, no. 25, pp. 192–206.

  6. Deshcherevskii, A.V. and Sidorin, A.Ya., Hidden periodic components and flicker noise in the electrotelluric field, Izv., Phys. Solid Earth., 1999a, vol. 35, no. 4, pp. 306–317.

    Google Scholar 

  7. Deshcherevskii, A.V. and Sidorin, A.Ya., Experimental investigations of the apparent resistivity seasonal variations in the context of seismology problems, Seism. Prib., 1999b, no. 32, pp. 62–75.

  8. Deshcherevskii, A.V. and Sidorin, A.Ya., Seasonal variations in the electrotelluric field in the central part of the Garm research area, Izv., Phys. Solid Earth, 2000a, vol. 36, no. 1, pp. 78–87.

    Google Scholar 

  9. Deshcherevskii, A.V. and Sidorin, A.Ya., Search for electrometrical earthquake precursors at the Garm test area, Seism. Prib., 2000b, no. 33, pp. 96–114.

  10. Deshcherevskii, A.V. and Sidorin, A.Ya., Seasonal variations in electrochemical parameters on the Garm polygon, in Elektricheskoe vzaimodeistvie geosfernykh obolochek (Electrical Interaction of Geospheric Shells), Moscow: OIFZ RAN, 2000c, pp. 127–147.

  11. Deshcherevskii, A.V. and Sidorin, A.Ya., Seasonal variations of the apparent resistivity as a function of the sounding depth, Izv., Phys. Solid Earth., 2004, vol. 40, no. 3, pp. 177–193.

    Google Scholar 

  12. Deshcherevskii, A.V. and Zhuravlev, V.I., Analytical program for time series studies, Fed. Sist. Seismol. Nabl.: Inf.-Anal. Byull., 1994, vol. 1, no. 3, pp. 32–35.

    Google Scholar 

  13. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Spectral–temporal features of seasonal variations in apparent resistivity, Izv., Phys. Solid Earth, 1997, vol. 33, no. 3, pp. 217–226.

    Google Scholar 

  14. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Arrangement of databank of geoelectrical monitoring at the Garm test site and properties of time series, Seism. Prib., 1998, no. 30, pp. 61–79.

  15. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., Formation of a new stereotype of in earthquake prediction studies, in Sovremennye matematicheskie i geologicheskie modeli prirodnoi sredy. Geofizika i matematika v XXI veke (Modern Mathematical and Geological Models of the Natural Environment), Moscow: OIFZ RAN, 2002, vol. 2, pp. 165–186.

  16. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., Studies on the Garm test area and their influence on the evolution of the view on the earthquake prediction, in Ocherki geofizicheskikh issledovanii (Outline of Geophysical Studies), Moscow: OIFZ RAN, 2003a, pp. 111–129.

  17. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., A new paradigm of earthquake prediction, Dokl. Earth Sci., 2003b, vol. 388, no. 1, pp. 68–71.

    Google Scholar 

  18. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’sky, A.N., and Sidorin, A.Ya., Problems in analysis of time series with gaps and their solutions in WinABD software package, Geofiz. Protsessy Biosfera, 2016a, vol. 15, no. 3, pp. 5–34.

    Google Scholar 

  19. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., ABD software package: Universal tool for analysis of monitoring data, Nauka Tekhnol. Razrab., 2016b, vol. 95, no. 4, pp. 35–48. doi 10.21455/ std2016.4-6

  20. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’sky, A.N., and Sidorin, A.Ya., Technologies for analyzing geophysical time Series: Part 1. Software requirements, Seism. Instrum., 2017a, vol. 52, no. 1, pp. 46–59.

  21. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD—A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017b, vol. 53, no. 3, pp. 203–223.

    Article  Google Scholar 

  22. Deshcherevskii, A.V., Modin, I.N., and Sidorin, A.Ya., Method for constructing a model of a geoelectric section taking into account seasonal variations based on data from long-term vertical electric sounding monitoring in search of earthquake precursors, Seism. Instrum., 2018, vol. 54, no. 4, pp. 424–436. doi 10.3103/S0747923918040023

  23. El’tsov, I.N., Manshtein, A.K., Morozova, G.M., Nevedrova, N.N., and Sidorin, A.Ya., Electromagnetic sounding at the Garm test site by the field formation method, in Elektricheskoe vzaimodeistvie geosfernykh obolochek (Electric Interaction of Geospheric Shells), Moscow: OIFZ RAN, 2000, pp. 183–192.

  24. Khmelevskoi, V.K. and Shevnin, V.A., Elektricheskoe zondirovanie geologicheskoi sredy (Electric Sounding of the Geological Medium), Vol. 1, Moscow: MGU, 1988.

  25. Khmelevskoi, V.K. and Shevnin, V.A., Elektricheskoe zondirovanie geologicheskoi sredy (Electric Sounding of the Geological Medium), Vol. 2, Moscow: MGU, 1992.

  26. Konovalov, Yu.F. and Sidorin, A.Ya., Geoelectric parameterization of the Garm polygon in the context of earthquake monitoring and prediction, Fed. Sist. Seismol. Nabl.: Inf.-Anal. Byull., 1996, vol. 3, no. 4, pp. 12–32.

    Google Scholar 

  27. Koefoed, O., Geosounding Principles 1 (Resistivity Sounding Measurements), Amsterdam: Elsevier, 1979; Moscow: Nedra, 1984.

  28. Loke, M.H., Dahlin, T., and Rucker, D.F., Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys, Near Surf. Geophys., 2014, no. 12, pp. 4–24.

  29. Morgunov, V.A. and Sidorin, A.Ya., Recording of electromagnetic earthquake precursors, Seism. Instrum., 1996, nos. 25–26, pp. 184–188.

  30. Nersesov, I.L., Sidorin, A.Ya., Zhuravlev, V.I., Velikhov, E.P., Volkov, Yu.M., Kuksa, Yu.I., Vengerskii, V.V., Babakov, Yu.P., Pisakin, A.V., Isaev, Yu.I., and Nazarovskii, V.V., Earthquake prediction by the method of deep electric sounding of the Earth crust using the “Pamir-1” MHD-generator, Dokl. Akad. Nauk SSSR, 1979, vol. 245, no. 1, pp. 55–58.

    Google Scholar 

  31. Nersesov, I.L., Sidorin, A.Ya., Zhuravlev, V.I., and Ostashevskii, M.G., Electrochemical observations in the Garm polygon, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1982, no. 4, pp. 92–98.

  32. Ostashevskii, M.G. and Sidorin, A.Ya., Method and results of electrometric observations in a seismoactive area, Dokl. Akad. Nauk SSSR, 1985a, vol. 282, no. 2, pp. 295–299.

    Google Scholar 

  33. Ostashevskii, M.G. and Sidorin, A.Ya., Digital resistive variometer for searching earthquake precursors, Seism. Prib., 1985b, vol. 17, pp. 37–41.

    Google Scholar 

  34. Ostashevskii, M.G. and Sidorin, A.Ya., Apparatura dlya dinamicheskoi geoelektriki (Instrumentation for Dynamical Geoelectricity), Moscow: Nauka, 1990.

  35. Ostashevskii, M.G. and Sidorin, A.Ya., Multifunctional station of electric sounding and the results of its use, in Kompleksnye issledovaniya po prognozu zemletryasenii (Complex Studies on Earthquake Prediction), Moscow: Nauka, 1991, pp. 182–199.

  36. Sidorin, A.Ya., Results of precision observations of variations in apparent resistance on the Garm polygon, Dokl. Akad. Nauk SSSR, 1986, vol. 290, no. 1, pp. 81–84.

    Google Scholar 

  37. Sidorin, A.Ya., Rezhimnye geofizicheskie nablyudeniya (Regular Geophysical Observations), Moscow: Nauka, 1990a.

  38. Sidorin, A.Ya., Garmskii geofizicheskii poligon (The Garm Geophysical Polygon), Moscow: IFZ AN SSSR, 1990b.

  39. Sidorin, A.Ya., Avtomatizirovannaya obrabotka dannykh na Garmskom geofizicheskom poligone (Automated Data Processing at the Garm Geophysical Polygon), Moscow: Nauka, 1991.

    Google Scholar 

  40. Sidorin, A.Ya., Predvestniki zemletryasenii (Earthquake Precursors), Moscow: Nauka, 1992.

  41. Sidorin, A.Ya., Studies of electromagnetic radiation in the Garm polygon, in Elektricheskoe vzaimodeistvie geosfernykh obolochek (Electric Interaction of Geophysical Shells), Moscow: OIFZ RAN, 2000a, pp. 166–182.

  42. Sidorin, A.Ya., Perturbations of the atmospheric electric potential and earthquakes in the Garm polygon, Seism. Prib., 2000b, no. 33, pp. 78–95.

  43. Sidorin, A.Ya., On perturbations of the gradient of electric potential of the atmosphere in the Garm polygon in 1949–1950, in Elektricheskoe vzaimodeistvie geosfernykh obolochek (Electric Interaction of Geophysical Shells), Moscow: OIFZ RAN, 2000c, pp. 148–165.

  44. Sidorin, A.Ya. and Ostashevskii, M.G., Technique of precision electric sounding in search for earthquake precursors, Seism. Prib., 1996, nos. 25–26, pp. 189–211.

  45. Sidorin, A.Ya. and Ostashevskii, M.G., Observations with a digital resistance variometer in the Garm polygon, Seism. Prib., 1998, no. 30, pp. 51–60.

  46. Sidorin, A.Ya. and Ostashevskii, M.G., Regular dipole sounding with the SEZ-1 instrument, Seism. Prib., 1999, no. 32, pp. 54–61.

  47. Sidorin, A.Ya. and Zeigarnik, V.A., Capacitor bank as a generating facility for earthquake prediction studies, Seism. Prib., 1997, no. 29, pp. 69–84.

  48. Sidorin, A.Ya. and Zhuravlev, V.I., Evaluating the size of earthquake preparation zones according to electric sounding data, in Modelirovanie predvestnikov zemletryasenii (Simulation of Earthquake Precursors), Moscow: Nauka, 1980, pp. 45–54.

  49. Sidorin, A.Ya., Zhuravlev, V.I., and Zeigarnik, V.A., Variations in apparent resistivity according to data of sounding with a bank of capacitors, Fed. Sist. Seismol. Nabl.: Inf.-Anal. Byull., 1996, vol. 3, no. 3, pp. 45–77.

    Google Scholar 

  50. Sidorin, A.Ya., Dzhumabaev, K.B., Dzhakypbaev, T., and Shevchenko, V.I., Recognisance studies of spatiotemporal features of the natural electromagnetic radiation in the Garm polygon, Seism. Prib., 2000, no. 33, pp. 69–77.

  51. Supper, R., Ottowitz, D., Jochum, B., Kim, J.H., Römer, A., Baron, I., Pfeiler, S., Lovisolo, M., Gruber, S., and Vecchiotti, F., Geoelectrical monitoring: An innovative method to supplement landslide surveillance and early warning, Near Surf. Geophys., 2014a, no. 12, pp. 133–150.

  52. Supper, R., Ottowitz, D., Jochum, B., Römer, A., Pfeiler, S., Kauer, S., Keuschnig, M., and Ita, M., Geoelectrical monitoring of frozen ground and permafrost in alpine areas: Field studies and considerations towards an improved measuring technology, Near Surf. Geophys., 2014b, no. 12, pp. 93–115.

  53. Volkov, Yu.M., Zhuravlev, V.I., Nersesov, I.L., and Sidorin, A.Ya., Primenenie impul’snogo MGD-generatora “Pamir-1” dlya elektricheskogo zondirovaniya zemnoi kory v tselyakh prognoza zemletryasenii (Use of the “Pamir-1” Pulse MHD-Generator for Electric Sounding of the Earth’s Crust in Earthquake Forecasts), Moscow: IAE, 1980, no. 3279/1.

  54. Wilkinson, P., Chambers, J., Kuras, O., Meldrum, P., and Gunn, D., Long-term time-lapse geoelectrical monitoring, First Break, 2011, vol. 29, pp. 77–84.

    Google Scholar 

  55. Zaborovskii, A.I., Elektrorazvedka: Uchebnik dlya vuzov (Geoelectric Prospecting: A Textbook for Universities), Moscow: Gostoptekhizdat, 1963.

  56. Zeigarnik, V.A. and Sidorin, A.Ya., The “Pamir-1” MHD-generator in earthquake prediction studies, Seism. Prib., 1997, vol. 27, pp. 77–91.

    Google Scholar 

  57. Zhuravlev, V.I. and Sidorin, A.Ya., Methods and results of the study of the geoelectric section of the Garm polygon, Dokl. Akad. Nauk SSSR, 1982, vol. 262, no. 4, pp. 834–837.

    Google Scholar 

  58. Zhuravlev, V.I. and Sidorin, A.Ya., Link between the spatial seismicity distribution and the geoelectric structure of the Garm polygon, Dokl. Akad. Nauk SSSR, 1986, vol. 287, no. 3, pp. 595–598.

    Google Scholar 

  59. Zhuravlev, V.I., Sidorin, A.Ya., and Shevchenko, V.I., Geoelectric section of the Garm polygon according to frequency sensing data, in Izuchenie prirody variatsii geofizicheskikh polei (Study of the Nature of Geophysical Field Variations), Moscow: OIFZ RAN, 1994, pp. 148–160.

  60. Zhuravlev, V.I., Konovalov, Yu.F., Lukk, A.A., and Sidorin, A.Ya., Geoelectrical model of the crust in the Garm region compared with geological and seismological data, Izv., Phys. Solid Earth, 1998, vol. 34, no. 8, pp. 647–655.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Institute of Physics of the Earth of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Deshcherevskii, I. N. Modin or A. Ya. Sidorin.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshcherevskii, A.V., Modin, I.N. & Sidorin, A.Y. Constructing the Optimal Model of the Geoelectric Section Using Vertical Electrical Sounding Data: Case Study of the Central Part of the Garm Research Area. Izv. Atmos. Ocean. Phys. 54, 1490–1511 (2018). https://doi.org/10.1134/S0001433818100031

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818100031

Keywords:

Navigation