Skip to main content
Log in

Seasonal Variations in Specific Resistivity in the Upper Layers of the Earth Crust

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

To predict the effects of strong earthquakes, it is important to know the soil characteristics. The accepted methods for such assessment ignore the fact that soils properties can vary greatly throughout the year. This is apparently due to the lack of data required for such consideration. In this paper, based on an analysis of long-term monitoring data by vertical electric sounding (VES) in a stationary array with a large number of spacing, we analyze seasonal variations in specific resistivity at different near-surface depths of a section in the area of the Peter the Great Range in Tajikistan. Based on long-term precision daily measurement data, a horizontally four-layered model of the geoelectric section was constructed. The amplitude of seasonal variations in the specific resistivity in each layer was estimated as the ratio of the standard deviation of the seasonal variation to the mean interannual specific resistivity. In the upper part of the section (depth 0–1.5 m), the amplitude of the seasonal variation reaches 20%, and its shape agrees well with the seasonal variation of the apparent resistivity at small spacings. In the second (depth 1.5–10 m) and third (depth 10–66 m) layers, the amplitude of the seasonal wave decreases rapidly, being less than 1% in the third layer. In the fourth layer (depth from 66 m or more), this amplitude again increases, reaching 2%. The difference between the maximum and minimum values of the seasonal wave (i.e., its range) reaches 7%. One possible explanation for such a high amplitude of seasonal variations in specific resistivity at depths of hundreds of meters is the presence of a deep aeration zone with annual regulation of the level and salinity of groundwater. The results should be taken into account in exploration geophysics, in engineering surveys, and in accounting for soil properties when predicting the possible consequences of strong seismic impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Amelichev, G.N., Vakhrushev, B.A., and Dublyanskii, V.N., Hydrodynamics and evolution of speleomorphogenesis of the Amtkeli karst system, western Abkhazia, Geopolit. Ekogeodin. Reg., 2007, no. 2, pp. 52–60.

  2. Barsukov, O.M. and Sorokin, O.N., Variations in apparent resistance of rocks in the Garm seismoactive area, Izv. Akad. Nauk SSSR. Fiz. Zemli, 1973, no. 10, pp. 100–102.

  3. Barsukov, O.M., Krasnyuk, P.D., Listov, N.A., and Sorokin, O.N., Approximate estimate of spatial extents of earthquake preparation zone from changes in electrical resistivity of rock massif, in Predvestniki zemletryasenii (Earthquake Precursors), pp. 207–214, Available from VINITI, 1973, no. 5498-73.

  4. Bektemirov, A.I. and Romanov, V.P., Regular electrometric observations in the Frunze prediction test area, Prognoz Zemletryasenii, 1988, no. 9, pp. 95–108.

  5. Bogdanov, M.I., Kalinin, V.V., and Modin, I.N., Application of high-precision low-frequency electrical survey complexes for a long-term monitoring of dangerous engineering-geological processes, Inzh. Izyskaniya, 2013, nos. 10–11, pp. 110–115.

  6. Deshcherevskii, A.V. and Sidorin, A.Ya., Experimental studies of seasonal variations in apparent resistivity: Applications to seismological problems, Seism. Prib., 1999a, vol. 32, pp. 62–75.

    Google Scholar 

  7. Deshcherevskii, A.V. and Sidorin, A.Ya., Nekotorye voprosy metodiki otsenki srednesezonnykh funktsii dlya geofizicheskikh dannykh (Some Problems Regarding the Method of Assessment of Average Seasonal Functions for Geophysical Data), Moscow: Ob”ed. Inst. Fiz. Zemli Ross. Akad. Nauk, 1999b.

  8. Deshcherevskii, A.V. and Sidorin, A.Ya., The seasonal and prognostic components of electrical resistance variations, Dokl. Earth Sci., 2000, vol. 370, no. 4, pp. 201–205.

    Google Scholar 

  9. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Spectral-temporal features of seasonal variations in apparent resistivity, Izv., Phys. Solid Earth, 1997, vol. 33, no. 3, pp. 217–226.

    Google Scholar 

  10. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Organization of the database for geoelectrical monitoring at the Garm test area and properties of the time series, Seism. Prib., 1998, vol. 30, pp. 61–79.

    Google Scholar 

  11. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., WinABD software package as a universal tool for analyzing the monitoring observation data, Nauka Tekhnol. Razrab., 2016, vol. 95, no. 4, pp. 35–48. https://doi.org/10.21455/std2016.4-6

    Google Scholar 

  12. Desherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Problems of analyzing the time series with gaps and their solution with the WinABD software, Izv., Atmos. Ocean. Phys., 2017a, vol. 15, no. 3, pp. 5–34.

    Google Scholar 

  13. Desherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 1. Software requirements, Seism. Instrum., 2017b, vol. 53, no. 1, pp. 46–59.

    Article  Google Scholar 

  14. Desherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD-A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017c, vol. 53, no. 3, pp. 203–223.

    Article  Google Scholar 

  15. Desherevskii, A.V., Modin, I.N., and Sidorin, A.Ya., Method for constructing a model of a geoelectric section taking into account seasonal variations based on data from long-term vertical electric sounding monitoring in search of earthquake precursors, Seism. Instrum., 2018, vol. 54, no. 4, pp. 424–436. https://doi.org/10.21455/si2017.4-5

    Article  Google Scholar 

  16. Deshcherevskii, A.V., Modin, I.N., and Sidorin, A.Ya., Constructing an optimal model of geoelectric section based on the data from long-term vertical electric sounding: Case study of the central Garm Research area, Geofiz. Protsessy Biosfera, 2018, vol. 17, no. 3, pp. 109–140. https://doi.org/10.21455/GPB2018.3-7

    Google Scholar 

  17. Elektricheskoe zondirovanie geologicheskoi sredy (Electrical Sounding of the Geological Medium), Khmelevskoi, V.K. and Shevnin, V.A., Eds., Moscow: Mosk. Gos. Univ., 1988, vol. 1.

    Google Scholar 

  18. Elektricheskoe zondirovanie geologicheskoi sredy (Electrical Sounding of the Geological Medium), Khmelevskoi, V.K. and Shevnin, V.A., Eds., Moscow: Mosk. Gos. Univ., 1992, vol. 2.

    Google Scholar 

  19. Garmskii geofizicheskii poligon (Garm Geophysical Research Area), Sidorin, A.Ya., Ed., Moscow: Nauka, 1990.

    Google Scholar 

  20. Gusev, A.S. and Mazina, S.E., Movement of karst waters in the Snezhnaya system, western Caucasus: Results of indicator experiment in 2010, Speleol. Spelestol., 2010, no. 1, pp. 121–124.

  21. Klimchuk, A.B., Evolution of the deepest karst systems and submarine discharge of the Arabika massif, western Caucasus: Role of Late Miocene regression of eastern Paratethys, Geol. Polezn. Iskop. Mir. Okeana, 2018, no. 1, pp. 58–82.

  22. Koefoed, O., Geosounding Principles, 1. Resistivity Sounding Measurements, vol. 14A of Methods in Geochemistry and Geophsyics, Amsterdam: Elsevier, 1979.

  23. Loke, M.H., Dahlin, T., and Rucker, D.F., Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys, Near Surf. Geophys., 2014, no. 12, pp. 4–24.

  24. Nersesov, I.L., Sidorin, A.Ya., Zhuravlev, V.I., Velikhov, E.P., Volkov, Yu.M., Cooksa, Yu.I., Venger-skii, V.V., Babakov, Yu.P., Pisakin, A.V., Isaev, Yu.I., and Nazarovskii, V.V., Earthquake prediction by deep electric sounding of the crust using Pamir-1 magnetohydrodynamic generator, Dokl. Akad. Nauk SSSR, 1979, vol. 245, no. 1, pp. 55–58.

    Google Scholar 

  25. Ostashevskii, M.G. and Sidorin, A.Ya., Method and results of electrometric observations in a seismoactive area, Dokl. Akad. Nauk SSSR, 1985, vol. 282, no. 2, pp. 295–299.

    Google Scholar 

  26. Ostashevskii, M.G. and Sidorin, A.Ya., Apparatura dlya dinamicheskoi geoelektriki (Hardware for Dynamic Geoelectrical Studies), Moscow: Nauka, 1990.

  27. Ostashevskii, M.G. and Sidorin, A.Ya., Multifunctional electrical sounding station and results of its application, in Kompleksnye issledovaniya po prognozu zemletryasenii (Comprehensive Studies on Earthquake Forecast), Moscow: Nauka, 1991, pp. 182–199.

  28. Ostashevskii, M.G., Poltanov, A.E., and Sidorin, A.Ya., Generator hardware for conducting earthquake forecast studies by the method of electromagnetic sounding with signal accumulation, Seism. Prib., 1997, vol. 27, pp. 15–20.

    Google Scholar 

  29. Sidorin, A.Ya., Variations in electrical resistivity in the upper crustal layer, Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 2, pp. 330–334.

    Google Scholar 

  30. Sidorin, A.Ya., Results of precision observations of apparent resistivity variations in the Garm Research Area, Dokl. Akad. Nauk SSSR, 1986, vol. 290, no. 1, pp. 81–84.

    Google Scholar 

  31. Sidorin, A.Ya., Predvestniki zemletryasenii (Earthquake Precursors), Moscow: Nauka, 1992.

  32. Sidorin, A.Ya. and Ostashevskii M.G., A method of precision electrical sounding when searching for earthquake precursors, Seism. Prib., 1996, vols. 25–26, pp. 189–211.

    Google Scholar 

  33. Sidorin, A.Ya. and Ostashevskii M.G., Case study of long-term dipole sounding with the use of SEZ-1 installment, Seism. Prib., 1999, vol. 32, pp. 54–61.

    Google Scholar 

  34. Sidorin, A.Ya. and Ostashevskii M.G., Results of SEZ installment application in the Garm Research Area, Seism. Prib., 2000, vol. 34, pp. 72–88.

    Google Scholar 

  35. Supper, R., Ottowitz, D., Jochum, B., Kim, J.H., Römer, A., Baron, I., Pfeiler, S., Lovisolo, M., Gruber, S., and Vecchiotti, F., Geoelectrical monitoring: An innovative method to supplement landslide surveillance and early warning, Near Surf. Geophys., 2014a, no. 12, pp. 133–150.

  36. Supper, R., Ottowitz, D., Jochum, B., Römer, A., Pfeiler, S., Kauer, S., Keuschnig, M., and Ita, M., Geoelectrical monitoring of frozen ground and permafrost in alpine areas: Field studies and considerations towards an improved measuring technology, Near Surf. Geophys., 2014b, no. 12, pp. 93–115.

  37. Wilkinson, P., Chambers, J., Kuras, O., Meldrum, P., and Gunn, D., Long-term time-lapse geoelectrical monitoring, First Break, 2011, vol. 29, pp. 77–84.

    Google Scholar 

  38. Zaborovskii, A.I., Elektrorazvedka: Uchebnik dlya vuzov (Electrical Survey: A Textbook), Moscow: Gostoptekhizdat, 1963.

  39. Zeigarnik, V.A. and Sidorin, A.Ya., Pamir-1 magnetohydrodynamic generator in earthquake prediction studies, Seism. Prib., 1997, vol. 27, pp. 77–91.

    Google Scholar 

  40. Zhuravlev, V.I., Zeigarnik, V.A., and Sidorin, A.Ya., Elektromagnitnye zondirovaniya zemnoi kory Garmskogo poligona odinochnymi impul’sami (Electromagnetic Sounding of the Earth’s Crust in the Garm Research Area with Singular Pulses), Moscow: Ob”ed. Inst. Fiz. Zemli Ross. Akad. Nauk, 1997.

Download references

ACKNOWLEDGMENTS

The study was carried out under the state assignment of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (State Contract no. 0144-2014-0098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Sidorin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desherevskii, A.V., Modin, I.N. & Sidorin, A.Y. Seasonal Variations in Specific Resistivity in the Upper Layers of the Earth Crust. Seism. Instr. 55, 300–312 (2019). https://doi.org/10.3103/S0747923919030058

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923919030058

Keywords:

Navigation