Skip to main content
Log in

Height-latitude structure of the vertical wind in the upper mesosphere and lower thermosphere (70–110 km)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Height-latitude distributions of the prevailing vertical wind for the mesosphere and lower thermosphere (70–110 km) are calculated on the basis of the empirical model of the monthly mean zonal mean prevailing horizontal wind. The presence of cellular structures is the main feature of the obtained vertical and meridional circulations. The ways such structures form and the problems of their modeling in global numerical models of the atmosphere are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. I. Portnyagin and T. V. Solov’eva, “Regular Motions in the Mesopausal-Lower Thermospheric Area,” Geomagn. Aeron. 22(2), 229–232 (1982).

    Google Scholar 

  2. Yu. I. Portnyagin and T. V. Solov’eva, “Height-Latitude Structure of Fields of Meridional and Vertical Widns in the Mesopause-Lower Thermosphere Area,” Meteorol. Gidrol., No. 9, 25–30 (1985).

  3. V. Fauliot, G. Thuiller, and F. Vial, “Mean Vertical Wind in the Mesosphere-Lower Thermosphere Area (80–120 km) Deduced from the WINDII Observations on Board UARS,” Ann. Geophys. 15, 1221–1231 (1997).

    Google Scholar 

  4. Portnyagin et al. “Mesosphere Lower Thermosphere Prevailing Wind Model,” Adv. Space Res. 34, 1755–1762 (2004).

    Article  Google Scholar 

  5. Xun Zhu, et al., “An Algorithm for Extracting Zonal Mean and Migrating Tidal Fields in the Middle Atmosphere from space-based Measurements: Applications to TIMED/SABER-Measured Temperature and Tidal Modeling,” J. Geophys. Res. 110 D02105, 1–14 (2005).

    Google Scholar 

  6. Yu. Portnyagin and T. V. Solovjova, “Global Empirical Wind Model for the Upper Mesosphere/Lower Thermosphere. I. Prevailing Wind,” Annales Geophys. 18, 300–315 (2000).

    Article  Google Scholar 

  7. D. H. McLane, “Drawing Contours from Arbitrary Data Points,” Computer J. 17, 318–324 (1974).

    Google Scholar 

  8. E. G. Merzlyakov and T. V. Solov’eva, “Interhemispheric Distinctions between the Polar Vortex Positions in the Winter Stratosphere and Mesosphere from Measurements with a SABER Instrument Aboard the TIMED space-based,” Izv. Akad. Nauk, Fiz. Atm. Okeana 44(3), 1–13 (2008) [Izv., Atmos. Ocean. Phys. 44 (3), 307–319 (2008)].

    Google Scholar 

  9. A. I. Pogoreltsev, “Generation of Normal Atmospheric Modes by Stratospheric Vacillations,” Izv. Akad. Nauk, Fiz. Atm. Okeana 43(4), 463–475 (2007) [Izv., Atmos. Ocean. Phys. 43 (4), 423–435 (2007)].

    Google Scholar 

  10. E. Becker and D. C. Fritts, “Enhanced Gravity-Wave Activity and Interhemispheric Coupling during the MaCWAVE/MIDAS Northern Summer Program 2002,” Annales Geophys. 24, 1175–1188 (2006).

    Article  Google Scholar 

  11. A. I. Pogoreltsev, A. A. Vlasov, K. Frohlich, and Ch. Jacobi, “Planetary Waves in Coupling the Lower and Upper Atmosphere,” J. Atmos. Sol.-Terr. Phys. 69, 2083–2101 (2007).

    Article  Google Scholar 

  12. E. Kalnay, et al., “The NCEP/NCAR Reanalysis Project,” Bull. Amer. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  13. R. Kistler, et al., “The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-Rom and Documentation,” Bull. Amer. Meteorol. Soc. 82(2), 247–267 (2001).

    Article  Google Scholar 

  14. S. Miyahara and D. H. Wu, “Effects of Solar Tides on the Zonal Mean Circulation in the Lower Thermosphere: Solstice Condition,” J. Atm. Terr. Phys. 51, 635–647 (1989).

    Article  Google Scholar 

  15. D. R. Jackson, “Tides in the Extended UGAMP General Circulation Model,” Quart. J. Royal Met. Soc. 121, 1589–1611 (1995).

    Article  Google Scholar 

  16. N. Grieger, G. Schmitz, U. Achatz, et al., “On the Influence of the Diurnal Tide on Mesospheric and Lower Thermospheric Mean Zonal Wind,” Geoph. Res. Abstr. 8, 01128 (2006).

    Google Scholar 

  17. M. E. Hagan and J. M. Forbes, “Migrating and Non-migrating Diurnal Tides in the Middle and Upper Atmosphere Excited by Tropospheric Latent Heat Release,” J. Geophys. Res. 107(D24), 4754 (2002).

    Article  Google Scholar 

  18. D. A. Ortland and M. J. Alexander, “Gravity Wave Influence on the Global Structure of the Diurnal Tide in the Mesosphere and Lower Thermosphere,” J. Geophys. Res. 111, 10 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Portnyagin.

Additional information

Original Russian Text © Yu.I. Portnyagin, T.V. Solov’eva, E.G. Merzlyakov, A.I. Pogorel’tsev, E.N. Savenkova, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 1, pp. 95–104.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portnyagin, Y.I., Solov’eva, T.V., Merzlyakov, E.G. et al. Height-latitude structure of the vertical wind in the upper mesosphere and lower thermosphere (70–110 km). Izv. Atmos. Ocean. Phys. 46, 85–94 (2010). https://doi.org/10.1134/S0001433810010123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810010123

Keywords

Navigation