Skip to main content
Log in

Russian investigations in atmospheric chemistry for 2003–2006

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A brief review of works performed by Russian scientists in the field of atmospheric chemistry from 2003 through 2006, including works on the chemistry of the troposphere, the chemistry of the ozone layer, and the role of chemistry in climate changes, is presented. This review was prepared in the Commission on Atmospheric Chemistry and Global Pollution of the Section of Meteorology and Atmospheric Sciences of the National Geophysical Committee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. K. Larin, “Russian Studies in Atmospheric Chemistry in 1999–2002,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 712–720 (2004) [Izv., Atmos. Ocean. Phys. 40, 638–646 (2004)].

    Google Scholar 

  2. A. N. Ermakov, I. K. Larin, A. A. Ugarov, and A. P. Purmal’, “Catalysis of SO2 Oxidation in the Atmosphere by Iron Ions,” Kinet. Katal. 44, 524–537 (2003).

    Article  Google Scholar 

  3. A. N. Ermakov, I. K. Larin, A. A. Ugarov, and A. P. Purmal’, “Effect of Droplet Sizes on the Rate and Mechanism of SO2 Oxidation in Tropospheric Clouds,” Kinet. Katal. 47, 836–848 (2006).

    Google Scholar 

  4. A. N. Ermakov, I. K. Larin, A. A. Ugarov, and A. P. Purmal’, “Thermodynamic Characteristics of Hydrogen Peroxide in H2SO4-H2O Solutions,” Zh. Fiz. Khim. 80, 2132–2138 (2006).

    Google Scholar 

  5. A. N. Yermakov, I. K. Larin, and A. A. Ugarov, “Aqueous-Phase Chemical Reactions in the Atmosphere,” in NATO Advanced Research Workshop, Program and Abstracts, Ed. by I. Mustafaev and I. Mamedyarova (2003).

  6. V. V. Smirnov, Ya. I. Sal’m, Yu. M. Myakela, and Yu. O. Paatero, “Explosive Occurrence of Extremely Small Aerosol Particles in the Atmosphere,” Meteorol. Gidrol., No. 4, 40–43 (2005).

  7. M. P. Anisimov, “Achievements in Studying Nucleation for Describing Atmospheric-Aerosol Dynamics: I. Experiment and Semiempirical Approaches,” Opt. Atmos. Okeana 18, 370–379 (2005).

    Google Scholar 

  8. S. N. Dubtsov, E. N. Dul’tsev, G. I. Skubnevskaya, et al., “Study of Aerosol Formation in SO2-H2O-Air Photolysis at a Reduced Pressure,” Opt. Atmos. Okeana 18, 406–409 (2005).

    Google Scholar 

  9. M. Yu. Arshinov, B. D. Belan, and D. V. Simonenkov, “Photochemical Formation of Microdisperse Aerosol in the Atmosphere over a Continental Region,” Opt. Atmos. Okeana 19, 328–339 (2006).

    Google Scholar 

  10. Aerosols of Siberia, Ed. by K. P. Kutsenogii (SO RAN, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  11. S. Safatov, I. S. Andreeva, J. A. Buryak, et al., “The Results of 7-Year Monitoring of the Biogenic Components of Atmospheric Aerosol in Southwestern Siberia,” Chem. Eng. Trans. 10, 401–406 (2006).

    Google Scholar 

  12. M. P. Anisimov, L. Anisimova, P. Turner, and P. Hopke, “Nucleation Research Progress for Description of Atmospheric Aerosol Dynamics: II. Nucleation Rate Surface for Water Vapor,” Opt. Atmos. Ocean 18, 380–386 (2005).

    Google Scholar 

  13. G. I. Skubnevskaya, S. N. Dubtsov, G. G. Dul’tseva, and E. N. Dul’tsev, “Photochemical Formation of Acid Aerosols in the Atmosphere As a Factor Determining Its Ecological Status” Opt. Atmos. Okeana 18, 684–687 (2005).

    Google Scholar 

  14. T. G. Dultseva, S. N. Dubtsov, Yu. Dubtsova, and G. I. Skubnevskaya, “Photochemical Mechanism of Aerosol Formation from Gaseous Metal-Containing Compounds Generated by Plants,” in Combustion and Pollution: Environmental Impact, Ed. by G. Roy, S. Frolov, and A. Starik (Torus, Moscow, 2005), pp. 289–294.

    Google Scholar 

  15. A. M. Baklanov, A. N. Ankilov, and M. P. Anisimov, “Experimental Modeling of Atmospheric Aerosol Dynamics,” in Nonequilibrium Processes, Plasma, Aerosols, and Atmospheric Phenomena, Ed. by G. D. Roy, S. M. Frolov, and A. M. Starik (Torus, Moscow, 2005), 2, pp. 302–308.

    Google Scholar 

  16. V. P. Ivanov, S. N. Trukhan, D. I. Kochubei, et al., “Chemical Composition of the Surface Layers of Atmospheric Aerosol Particles (Novosibirsk and Irkutsk Regions),” Khim. Interesakh Ustoich. Razvit. 13(1), 51–63 (2005).

    Google Scholar 

  17. K. P. Kutsenogii and P. K. Kutsenogii, “Method of Identifying Atmospheric-Aerosol Sources in the Siberian Region,” Geogr. Prir. Resursy., Spets. Vyp. 43–53 (2004).

  18. N. N. Ulyumdzhieva, N. E. Chubarova, and A. N. Smirnov, “Characteristic of Atmospheric Aerosol in Moscow from the Data of a CIMEL Solar Photometer,” Meteorol. Gidrol., No. 1, 48–57 (2005).

  19. N. N. Ulyumdzhieva, N. E. Chubarova, and B. Kholben, “Optical Properties of Atmospheric Aerosol in the Period of Forest Fires in 2002 in the Moscow Region,” Meteorol. Gidrol., No. 3, 45–52 (2005).

  20. I. D. Eremina, “Multiyear Observations of the Chemical Composition of Atmospheric Precipitation in Moscow,” Vestn. Mosk. Univ., Ser. 5, Geogr. No. 2, 21–26 (2004).

  21. I. D. Eremina, “Acidity and Ion Composition of Atmospheric Precipitation in Moscow,” in Handbook on Ecoclimatological Characteristics of Moscow (MGU, Moscow, 2005), 2, pp. 143–153 [in Russian].

    Google Scholar 

  22. I. D. Eremina, “Variations in Atmospheric Precipitation Acidity in Recent Years from Observations of the MSU Meteorological Observatory,” in Climate, Quality of Atmospheric Air, and Health of Muscovites, Ed. by B. A. Revich (Adamant Moscow, 2006) [in Russian].

  23. Ch. A. Lange and A. Pfennigsdorff, et al., “Sediments of Salt as a New Source of Volatile Highly Chlorinated C1/C2 Hydrocarbons,” Geophys. Rev. Lett. 32, L014001, 1–4 (2005).

    Google Scholar 

  24. G. Krueger and N. Elansky, et al., “Input of Trichloroacetic Acid into the Vegetation of Various Climate Zones — Measurements on Several Continents,” Chemosphere 52, 443–449 (2003).

    Article  Google Scholar 

  25. N. Elansky and E. Putz, et al., “Trichloracetic Acid in the Vegetation of Polluted and Remote Areas of Both Hemisphere: Part II. Salt Lakes as Novel Sources of Natural Chlorohydrocarbons,” Atmos. Environ., No. 38, 4197–4204 (2004).

    Google Scholar 

  26. Mobile Observatory TROICA and Observations of the Atmospheric Composition over Russia, Ed. by N. F. Elansky (A.M. Obukhov Inst. of Atmospheric Physics, Moscow, 2005) [in Russian].

    Google Scholar 

  27. V. V. Zelenov, E. V. Aparina, M. Yu. Gershenzon, et al., “Kinetic Mechanisms for Entraining Atmospheric Gases by the Surfaces of Sea Salts: III. Reaction Entrainment of NO3 Radicals by Moistened NaX (X = Cl, Br) Salts under Steady Conditions,” Khim. Fiz. 22(6), 59–71 (2003).

    Google Scholar 

  28. V. V. Zelenov, E. V. Aparina, M. Yu. Gershenzon, et al., “Kinetic Mechanisms for Entraining Atmospheric Gases by the Surfaces of Sea Salts: IV. Initial Stage of Entraining NO3 on NaCl and NaBr Salts,” Khim. Fiz. 22(11), 37–48 (2003).

    Google Scholar 

  29. V. V. Zelenov, E. V. Aparina, D. V. Shestakov, and Yu. M. Gershenzon, “Kinetic Mechanisms for Entraining Atmospheric Gases by the Surfaces of Sea Salts: V. Entraining NO3 on the Coating Deposited from the Mixture of MgCl2 6H2O and NaCl Salts,” Khim. Fiz. 23(1), 18–26 (2004).

    Google Scholar 

  30. A. P. Dement’ev, V. V. Zelenov, E. V. Aparina, et al., “Kinetic Mechanisms for Entraining Atmospheric Gases by the Surfaces of Sea Salts: VI. MgCl2 · 6H2O Segregation on the Surface of NaCl Salt Doped by MgCl2 · 6H2O and Its Influence on the Rate of a Heterogeneous Reaction with NO3,” Khim. Fiz. 23(11), 54–59 (2004).

    Google Scholar 

  31. V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, et al., “Kinetic Mechanisms for Entraining Atmospheric Gases by the Surfaces of Sea Salts: VII. Entraining ClNO3 by ythe Surface of Dry NaCl Salt,” Khim. Fiz. 25(11), 35–49 (2006).

    Google Scholar 

  32. V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, et al., “Kinetic Mechanism of ClONO2 Uptake on Polycrystalline of NaCl,” J. Phys. Chem. A 110, 6771–6780 (2006).

    Article  Google Scholar 

  33. V. V. Zelenov, V. M. Grigor’eva, E. V. Aparina, et al., “Kinetic Mechanisms for Entraining Atmospheric Gases by the Surfaces of Sea Salts: VIII. Entraining ClNO3 on Moistened NaCl Salt: Chlorine Activation and Oxidative Ability of Coastal Zones,” Khim. Fiz. 25(5), 31–34 (2006).

    Google Scholar 

  34. V. S. Zakharenko and A. N. Moseichuk, “Adsorption of Freons by Calcium Carbonate under Atmospheric Conditions,” Opt. Atmos. Okeana 18, 506–510 (2005).

    Google Scholar 

  35. M. J. Kurylo and V. L. Orkin, “Determination of Atmospheric Lifetimes via the Measurement of OH Radical Kinetics,” Chem. Rev. 103, 5049–5076 (2003).

    Article  Google Scholar 

  36. E. S. Vasil’ev, I. I. Morozov, W. Hack, et al., “Kinetics and Mechanism of Atmospheric Reactions of Partially Fluorinated Alcohols,” Kinet. Catal. 47, 834–845 (2006).

    Article  Google Scholar 

  37. S. N. Kozlov, V. L. Orkin, and M. J. Kurylo, “An Investigation of the Reactivity of OH with Fluoroethanes: CH3CH2F (HFC-161), CH2FCH2F (HFC-152), and CH3CHF2 (HFC-152a),” J. Phys. Chem. A 107, 2239–2246 (2003).

    Article  Google Scholar 

  38. S. N. Kozlov, V. L. Orkin, and M. J. Kurylo, “The OH Reactivity and UV Spectra of Propane, n-Propyl Bromide, and Isopropyl Bromide,” J. Phys. Chem. A 107, 1333–1338 (2003).

    Article  Google Scholar 

  39. D. F. Hurst, P. A. Romashkin, J. Elkins, et al., “Emissions of Ozone-Depleted Substances in Russia deuring 2001,” J. Geophys. Res. 109, D14303 (2004).

    Google Scholar 

  40. A. N. Rublev, N. E. Chubarova, A. N. Trotsenko, and G. I. Gorchakov, “Determination of NO2 Column Amounts from AERONET Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 62–77 (2004) [Izv., Atmos. Ocean. Phys. 40, 54–67 (2004)].

    Google Scholar 

  41. A. V. Zinchenko, N. N. Paramonov, V. I. Privalov, and A. I. Reshetnikov, “Analysis of Measurements of the Atmospheric Methane Concentration near St. Petersburg,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40(1), 90–95 (2004) [Izv., Atmos. Ocean. Phys. 40, 80–85 (2004)].

    Google Scholar 

  42. F. V. Kashin, V. N. Aref’ev, Yu. I. Baranov, et al., “Variability of the Methane Content in the Atmospheric Surface Layer and in the Atmospheric Column,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 403–409 (2004) [Izv., Atmos. Ocean. Phys. 40, 356–361 (2004)].

    Google Scholar 

  43. D. V. Ionov, T. A. Egorova, V. A. Zubov, and E. V. Rozanov, “Global Fields of the Total Ozone and Nitrogen Dioxide Contents Retrieved from Satellite Measurements and a Three-Dimensional Simulation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 620–630 (2003) [Izv., Atmos. Ocean. Phys. 39, 558–567 (2003)].

    Google Scholar 

  44. M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeev, “Temporal Variability of Total Atmospheric Carbon Monoxide over St. Petersburg,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 355–365 (2004) [Izv., Atmos. Ocean. Phys. 40, 313–322 (2004)].

    Google Scholar 

  45. T. A. Markova, N. F. Elanskii, I. B. Belikov, et al., “Distribution of Nitrogen Oxides in the Atmospheric Surface Layer over Continental Regions of Russia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 811–823 (2004) [Izv., Atmos. Ocean. Phys. 40, 713–724 (2004)].

    Google Scholar 

  46. O. V. Postylyakov, A. S. Elokhov, I. B. Belikov, et al., Observations of Ozone and Nitrogen Dioxide Profiles in TROICA Experiments,” in Proceeding of the XX Quadrennial Ozone Symposium (Kos, Greece, 2004), Ed. by Christos S. Serefos (Univ. of Athens, Athens, 2004), pp. 1026–1027.

    Google Scholar 

  47. N. F. Elansky, V. N. Kozhevnikov, G. I. Kuznetsov, and B. I. Volkov, “Effect of Orographic Disturbances on Ozone Redistribution in the Atmosphere by the Example of Airflow about the Antarctic Peninsula,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 105–120 (2003) [Izv., Atmos. Ocean. Phys. 39, 93–107 (2003)].

    Google Scholar 

  48. A. M. Zvyagintsev, “Similarity of Long-Term Surface Ozone Series Obtained at the Dolgoprudnyi (Moscow Oblast) and Belsk (Poland) Stations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 510–514 (2003) [Izv., Atmos. Ocean. Phys. 39, 461–465 (2003)].

    Google Scholar 

  49. N. F. Elansky, A. Ya. Arabov, I. A. Senik, et al., “The Study of the Surface Ozone Variations of Different Time Scales at Some Regions of Russia,” in EUROTRAC-2, TOR-2 Tropospheric Ozone Research, Final Report (ISS, Germany, 2003), pp. 63–68.

    Google Scholar 

  50. O. A. Tarasova, N. F. Elansky, G. I. Kuznetsov, et al., “Impact of Air Transport on Seasonal Variations and Trends of Surface Ozone at Kislovodsk High Mountain Station,” J. Atmos. Chem. 45, 245–259 (2003).

    Article  Google Scholar 

  51. O. A. Tarasova, G. I. Kuznetsov, N. F. Elansky, et al., “Features in Seasonal Variations and Trends of Surface Ozone Concentration at the Kislovodsk High-Altitude Scientific Station,” Vestn. Mosk. Univ., Ser. 3, Fiz., Astron., No. 3b, 45–49 (2003).

  52. A. N. Zvyagintsev, G. M. Kruchenitskii, and A. A. Chernikov, “Long-Term Variations in Tropospheric Ozone Content,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 66–77 (2005) [Izv., Atmos. Ocean. Phys. 41, 56–66 (2005)].

    Google Scholar 

  53. N. F. Elansky, A. M. Zvyagintsev, and O. A. Tarasova, “Studies of Tropospheric Ozone in Europe and Russia,” Meteorol. Gidrol., No. 1, 125–127 (2003).

  54. N. F. Elansky, I. B. Belikov, T. A. Markova, et al., “Experiment TROICA on Surface Ozone and Its Precursor Distributions over Continental Regions of Russia,” in Proceeding of the XX Quadrennial Ozone Symposium (, Kos, Greece, 2004), Ed. by Christos S. Serefos (Univ. of Athens, Athens, 2004), pp. 867–868.

    Google Scholar 

  55. N. F. Elansky, K. B. Moiseenko, and N. V. Pankratova, “Photochemical Generation of Ozone in the Plumes of Anthropogenic Emissions over the Khabarovsk Territory,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 511–519 (2005) [Izv., Atmos. Ocean. Phys. 41, 461–468 (2005)].

    Google Scholar 

  56. A. A. Kiselev and I. L. Karol’, “Response of Tropospheric Gas Composition in Northern Midlatitudes to a Possible Methane Outbreak from the Erath’s Subsoil to the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 579–588 (2003) [Izv., Atmos. Ocean. Phys. 39, 521–529 (2003)].

    Google Scholar 

  57. N. F. Elansky, K. B. Moiseenko, and L. V. Panin, “Effect of Corona Discharges at High-Voltage Power Transmission Lines on the Chemical Composition of Surface Air,” in Proceedings of the Meeting on Atmospheric Physics: Electric Processes, Radiophysical Methods of Study (Nizhni Novgorod, 2003), pp. 68–70 [in Russian].

  58. http://www.rrc.phys.spbu.ru/reviews/report MCAP-04.doc

  59. http://www.rrc.phys.spbu.ru/msar06/report_2006.doc

  60. I. K. Larin, A. I. Spasskii, E. M. Trofimova, and L. E. Turkin, “Mechanism and Kinetics of the Reaction between Iodine Methyl and Ozone,” Kinet. Katal. 47(6), 1–7 (2006).

    Google Scholar 

  61. I. K. Larin, A. I. Spasskii, E. M. Trofimova, and L. E. Turkin, “Experimental Evidence for Acceleration of Reaction between Iodine Monoxide and Chlorine Monoxide at the Reactor Surface,” Kinet. Catal. 44, 202–209 (2003).

    Article  Google Scholar 

  62. V. L. Orkin, V. G. Khamaganov, and I. K. Larin, “In Situ Separation of Heterogeneous and Homogeneous Reaction Components in Flow Experiment,” Int. J. Chem. Kinet. 25, 67–78 (2004).

    Article  Google Scholar 

  63. A. I. Chichinin, “Chemical Propetries of Electronically Excited Halogen Atoms X(2P 3/2, 1/2) (X = F, Cl, Br, I),” J. Phys. Chem. Ref. Data 2, 869–928 (2006).

    Article  Google Scholar 

  64. A. I. Chichinin, T. Einfel’d, K. Maul’, and K.-Kh. Gerike, “Direct Measurement of Three-Dimensional Distributions of Cl(2R3/2, 1/2) Atoms over Rates during the Photodissociation of COCl2, CSCl2, S2Cl2, and SOCl2 Molecules,” Dokl. Akad. Nauk 407, 203–207 (2006).

    Google Scholar 

  65. K. V. Vid’ma, G. A. Bogdanchikov, A. V. Baklanov, et al., “Study of the Photodissociation of (CH3I)2 and (HI)2 Van der Waals Complexes with the Aid of a KrF Laser by the Method of Time-of-Flight Mass Spectrometry with Resolution in Ion Kinetic Energy,” Khim. Fiz. 25(2), 34–45.

  66. A. Chichinin, T. Einfeld, K.-H. Gerike, et al., “Protodis-sociation Dynamics of SOCl2,” Phys. Chem. 7, 301–309 (2005).

    Article  Google Scholar 

  67. G. A. Bogdanchikov, A. V. Baklanov, and D. H. Parker, “The Substitution Reactions RH + O2 → RO2 + H: Transition State Theory Calculations Based on the ab initio and DFT Potential Energy Surface,” Chem. Phys. Lett. 385, 486–490 (2004).

    Article  Google Scholar 

  68. A. M. Zvyagintsev and G. M. Kruchenitskii, “Relationship between Total Ozone Content in the Northern Hemisphere and the Arctic and North Atlantic Oscillations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 505–509 (2003) [Izv., Atmos. Ocean. Phys. 39, 456–460 (2003)].

    Google Scholar 

  69. V. I. Bekoryukov, V. N. Glazkov, E. A. Zhadin, et al., “Assessment of the Contributions of Dynamic and Chemical Factors to Variations in the Total Ozone Content in the Extratropical Latitudes of the Northern Hemisphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 397–402 (2004) [Izv., Atmos. Ocean. Phys. 40, 351–355 (2004)].

    Google Scholar 

  70. V. N. Marichev, I. L. Galkina, and G. M. Kruchenitskii, “Influence of Global Geophysical Processes on the Formation of the Vertical Distribution of Ozone and Temperature over Western Siberia,” Meteorol. Gidrol., No. 11, 44–53 (2003).

  71. A. N. Gruzdev and G. P. Brasseur, “Influence of the 11-Year Solar Cycle on Characteristics of the Annual Cycle of Total Ozone,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 379–391 (2007) [Izv., Atmos. Ocean. Phys. 43, 344–356 (2007)].

    Google Scholar 

  72. S. P. Smyshlyaev, V. Ya. Galin, P. A. Zimenko, and A. P. Kudryavtsev, “Modeling the Effect of Variations in Spectral Fluxes of Solar Radiation Caused by Solar Activity on the Atmospheric Ozone Content,” Meteorol. Gidrol., No. 8, 25–37 (2005).

  73. I. G. Dyominov and A. M. Zadorozhnyi, “Contribution of Natural and Anthropogenic Factors to Long-Term Changes in the Earth’s Ozone Layer at the End of the 20th Century,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41,51–65 (2005)) [Izv., Atmos. Ocean. Phys. 41, 43–55 (2005)].

    Google Scholar 

  74. I. K. Larin, “On the Contribution of Natural Facors to the Atmospheric Ozone Trend in 1979–1990,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 285–288 (2006) [Izv., Atmos. Ocean. Phys. 42, 262–264 (2006)]

    Google Scholar 

  75. A. E. Ulanovskii, A. N. Luk’yanov, V. A. Yushkov, et al., “Estimation of the Chemical Loss of Ozone in the Antarctic Atmosphere in the 1999 Winter-Spring Season from Direct Measurements and Simulations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 776–785 (2004) [Izv., Atmos. Ocean. Phys. 40, 695–703 (2004)].

    Google Scholar 

  76. V. F. Radionov and E. N. Rusina, “Measurements of the Total Ozone Content in the Central Arctic Basin,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 716–719 (2006) [Izv., Atmos. Ocean. Phys. 42, 658–662 (2006)].

    Google Scholar 

  77. Yu. E. Ozolin, I. L. Karol’, A. A. Kiselev, and V. A. Zubov, “Trajectory Modeling of Air Mass Transport and Photochemistry in the Antarctic Stratospheric Polar Vortex,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 291–303 (2003) [Izv., Atmos. Ocean. Phys. 39, 444–455 (2003)].

    Google Scholar 

  78. P. N. Vargin and E. A. Zhadin, “Effect of Atratospheric Warming on the Antarctic Ozone Hole in 2002,” Meteorol. Gidrol., No. 8, 36–45 (2004).

  79. G. P. Gushchin, “Ozone-Hole Theory,” Opt. Atmos. Okeana 17, 583–597 (2004).

    Google Scholar 

  80. I. K. Larin and A. A. Ugarov, “Climatic Prognosis for 2000–2100: II. Role of Atmospheric Chemical Processes in Climate Changes,” Khim. Fiz. 22(4), 21–28 (2003).

    Google Scholar 

  81. G. A. Zherebtsov, V. A. Kovalenko, S. I. Molodykh, and O. A. Rubtsova, “Model of Solar-Activity Impact on Climatic Characteristics of the Earth’s Troposphere,” Opt. Atmos. Okeana 18, 1042–1050 (2005).

    Google Scholar 

  82. E. A. Kasatkina, O. I. Shumilov, and A. G. Kanat’ev, “Manifestations of the Cycles of Solar Activity in the Atmosphere of Northern Atlantic and Europe,” Meteorol. Gidrol., No. 1, 55–59 (2006).

  83. G. A. Zherebtsov, V. A. Kovalenko, and S. I. Molodykh, “Radiation Balance of the Atmosphere and Climatic Manifestations of Solar Variability,” Opt. Atmos. Okeana 17, 1003–1017 (2004).

    Google Scholar 

  84. L. L. Golubyatnikov, I. I. Mokhov, E. A. Denisenko, and V. A. Tikhonov, “Model Estimates of Climate Change Impact on the Vegetation Cover and Atmospheric Carbon Sink,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 22–32 (2005) [Izv., Atmos. Ocean. Phys. 41, 19–28 (2005)].

    Google Scholar 

  85. S. L. Bondarenko, V. V. Zuev, N. E. Zueva, and M. A. Bondarenko, “Effect of the Ozonosphere’s Oscillations and Related Solar UV-B Radiation on the Growth and Productivity of Coniferous Forests,” Opt. Atmos. Okeana 18, 120–123 (2005).

    Google Scholar 

  86. V. V. Zuev, B. D. Belan, N. E. Zueva, et al., “Relationship of the Carbon Dioxide Sink from the Atmosphere over Siberian to Boreal Forests to the Ozonosphere’s Oscillations,” Opt. Atmos. Okeana 18, 618–620 (2005).

    Google Scholar 

  87. V. V. Zuev, N. E. Zueva, and S. L. Bondarenko, “Influence of the Ozonosphere’s Long-Period Oscillations on Variations in the Global CO2 Content in the Atmosphere,” Opt. Atmos. Okeana 18, 621–626 (2005).

    Google Scholar 

  88. A. N. Gruzdev and G. P. Brasseur, “Long-Term Changes in the Mesosphere Calculated by a Two-Dimensional Model,” J. Geophys. Res. 110, doi: 10.1029/2003JD004410, D03304 (2005).

  89. P. F. Demchenko, A. V. Eliseev, M. M. Arzhanov, and I. I. Mokhov, “Impact of Global Warming Rate on Permafrost Degradation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(1), 35–43 (2006)) [Izv., Atmos. Ocean. Phys. 42, 32–39 (2006)].

    Google Scholar 

  90. E. K. Mol’kentin, E. D. Nadezhina, and O. B. Shklyarevich, “Model Estimations of the Effect of Cover on Permafrost Degradation during Climate Warming,” Meteorol. Gidrol., No. 3, 87–95 (2003).

  91. Yu. A. Izrael’, A. V. Pavlov, Yu. A. Anokhin, et al., “Statistical Estimates for Climate-Element Variations in Russian Permafrost Regions,” Meteorol. Gidrol., No. 5, 27–38 (2006).

  92. A. V. Shcherbakov and V. V. Malakhova, “Modeling the Spatial Distribution of Methanehydrates in the World Ocean and of the Methane Flux to the Atmosphere,” Opt. Atmos. Okeana 19, 530–535 (2006).

    Google Scholar 

  93. K. Ya. Kondrat’ev, “Aerosol and Climate: Current State and Prospects for Developments: 1. Aerosol Formation and Properties and Their Transformation,” Opt. Atmos. Okeana 19, 5–22 (2006).

    Google Scholar 

  94. K. Ya. Kondrat’ev, “Aerosol and Climate: Current State and Prospects for Developments: 3. Aerosol Radiation Disturbing Impact,” Opt. Atmos. Okeana 19, 565–575 (2006).

    Google Scholar 

  95. K. Ya. Kondrat’ev, “Aerosol and Climate: Current State and Prospects for Developments: 2. ACE-Asia Field Observation Experiment,” Opt. Atmos. Okeana 19, 375–395 (2006).

    Google Scholar 

  96. I. A. Gorchakova, P. P. Anikin, and E. V. Romashova, “Estimations of the Aerosol Radiation Forcing from Measurements at the IAP RAS Zvenigorod Scientific Station in March 2004,” Opt. Atmos. Okeana 19, 481–483 (2006).

    Google Scholar 

  97. V. V. Zuev, V. D. Burlakov, A. V. El’nikov, and A. V. Nevzorov, “Lidar Observations of the Midlatitudinal Stratospheric Aerosol Layer over a Long Seismically Quiet Period,” Opt. Atmos. Okeana 19, 598–603 (2006).

    Google Scholar 

  98. V. V. Zuev, “Relationship between Siberian Climate Warmings in the 20th Century and the Activity of Tropical Volcanoes,” Opt. Atmos. Okeana 19, 887–893 (2006).

    Google Scholar 

  99. K. Ya. Kondrat’ev, “From Nano- to Global Scales: Properties, Formation Processes, and Consequences of Actions of Atmospheric Aerosol: 7. Aerosol Radiation Disturbing Impact on Climate,” Opt. Atmos. Okeana 18, 535–556 (2005).

    Google Scholar 

  100. V. V. Bychkov, V. N. Marichev, G. G. Matvienko, and B. M. Shevtsov, “Mechanisms of Forming Aerosol Layers in the Stratosphere in the Periods of Increased Magnetic Activity,” Opt. Atmos. Okeana 18, 1083–1088 (2005).

    Google Scholar 

  101. K. Ya. Kondrat’ev, “Atmospheric Aerosol as a Climate-Forming Atmospheric Component: 1. Properties of Different Types of Aerosols,” Opt. Atmos. Okeana 17, 5–24 (2004).

    Google Scholar 

  102. K. Ya. Kondrat’ev, “Atmospheric Aerosol as a Climate-Forming Atmospheric Component: 2. Remote Sensing of the Global Spatiotemporal Variability of Aerosol and Its Impact on Climate,” Opt. Atmos. Okeana 17, 25–35 (2004).

    Google Scholar 

  103. K. Ya. Kondrat’ev, “From Nano- to Global Scales: Properties, Formation Processes, and Consequences of Actions of Atmospheric Aerosol: 1. Field Observation Experiments (Africa and Asia),” Opt. Atmos. Okeana 17, 699–714 (2004).

    Google Scholar 

  104. K. Ya. Kondrat’ev, “From Nano- to Global Scales: Properties, Formation Processes, and Consequences of Actions of Atmospheric Aerosol: 1. Field Observation Experiments (America, Western Europe, and High Latitudes),” Opt. Atmos. Okeana 17, 715–742 (2004).

    Google Scholar 

  105. Yu. A. Izrael’, “Effective Way of Climate Preservation at the Current Level—the Main Aim of Solving the Climate Problem,” Meteorol. Gidrol., No. 10, 5–9 (2005).

  106. V. P. Meleshko, G. S. Golitsyn, V. A. Govorkova, et al., “Possible Anthropogenic Climate Changes in Russia in the 21st Century: Estimations from an Ensemble of Climate Models,” Meteorol. Gidrol., No. 4, 38–49 (2004).

  107. V. M. Kattsov, S. V. Vavulin, V. A. Govorkova, and T. V. Pavlova, “Scenarios of Arctic Climate Changes in the 21st Century,” Meteorol. Gidrol., No. 10, 5–9 (2003).

  108. S. P. Malevskii-Malevich, E. K. Mal’kentin, E. D. Nadezhina, and O. B. Shklyarevich, “Assessment of Changes in Fire Risks in Russian Forests under the Expected Climate Warming in the 21st Century,” Meteorol. Gidrol., No. 3, 36–41 (2005).

  109. Yu. A. Izrael’, “On the Concept of a Dangerous Anthropogenic Impact on the Climatic System and on the Possibilities of the Biosphere,” Meteorol. Gidrol., No. 4, 30–37 (2004).

  110. I. M. Nazarov, Yu. A. Izrael’, M. L. Gitarskii, et al., “Problem of Anthropogenic Impact on Climate and the Kyoto Protocol,” Meteorol. Gidrol., No. 4, 137–148 (2004).

  111. M. Ch. Zalikhanov, “Climate Change and a Stable Development of Russia,” Meteorol. Gidrol., No. 4, 130–136 (2004).

  112. B. G. Sherstyukov, “Thermal Inertia of the Ocean and the Greenhouse Effect in Current Climate Changes,” Meteorol. Gidrol., No. 7, 66–72 (2006).

  113. G. V. Gruza, E. Ya. Ran’kova, L. N. Aristova, and L. K. Kleshchenko, “Uncertainty in Some Forecasts for Air Temperature and Precipitation in Russia,” Meteorol. Gidrol., No. 10, 5–23 (2006).

  114. B. G. Sherstyukov, “Scenarios of Climate in the Moscow Region to 2050,” Meteorol. Gidrol., No. 7, 26–32 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Larin.

Additional information

Original Russian Text © I.K. Larin, 2009, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2009, Vol. 45, No. 2, pp. 209–217.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larin, I.K. Russian investigations in atmospheric chemistry for 2003–2006. Izv. Atmos. Ocean. Phys. 45, 198–206 (2009). https://doi.org/10.1134/S0001433809020054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433809020054

Keywords

Navigation