Skip to main content
Log in

Parametrization of turbulent fluxes over inhomogeneous landscapes

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Reasons for the nonclosure of the heat balance in the atmospheric boundary layers over natural land surfaces are analyzed. Results of measuring the heat-balance components over different land surfaces are used. The Cabauw (Netherlands) data (obtained throughout 1996 over a grass surface with intermittent shrubs and single trees) and the data from the Anchor station in Germany (measured over coniferous forest in 2000–2001) are analyzed. In all, the analysis involves about fifty thousand independent values of the heat-balance components measured in the experiments, which should be indicative of the reliability of the results obtained in the paper. The data have shown that the heat balance is not closed and the imbalance is 50–250 W/m2. The sum of the latent and sensible heat fluxes λE + H = STF is found to be systematically smaller than the difference between the net radiation and the heat flux into the ground R n G. It is shown that the main cause of a systematic heat imbalance in the atmospheric boundary layers over inhomogeneous land surfaces is that the methods of surface-flux measurement and estimation are based on the theory that requires the hypothesis of stationarity and horizontal homogeneity. Direct data analysis has shown that the heat imbalance increases with landscape inhomogeneity. In the paper, a parametrization of the heat imbalance is carried out and the coefficient k f (z ef0 /L ef) is introduced as a measure of inhomogeneity. For this, data from the experiments FIFE, KUREX, TARTEX, SADE, etc., are also used. Empirical formulas are presented to refine the results of direct measurements and calculations of surface fluxes over natural (inhomogeneous) land surfaces from profile and standard (using bulk parametrizations) data. These formulas can also be used to determine surface fluxes over inhomogeneous underlying land surfaces in order to take into account so-called subgrid-scale effects in constructing prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Garratt, The Atmospheric Boundary Layer (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  2. E. T. Kanemasu, S. B. Verma, E. A. Smith, et al., “Surface Flux Measurements in FIFE: An Overview,” J. Geophys. Res. D 97(17), 18547–18555 (1992).

    Google Scholar 

  3. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT, Cambridge, 1971; Gidrometeoizdat, St. Petersburg, 1992).

    Google Scholar 

  4. J. A. Businger, J. A. Wyngaard, Y. Izumi, et al., “Flux-Profile Relationships in the Atmospheric Surface Layer,” J. Atmos. Sci. 28, 181–189 (1971).

    Article  Google Scholar 

  5. J. C. Kaimal, J. C. Wyngaard, Y. Izumi, et al., “Spectral Characteristics of Surface-Layer Turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).

    Article  Google Scholar 

  6. B. A. Kader and A. M. Yaglom, “Heat and Mass Transfer Laws for Fully Turbulent Wall Flows,” Int. J. Heat Mass Transfer 15, 2329–2353 (1972).

    Article  Google Scholar 

  7. W. Brutsaert, Evaporation into the Atmosphere: Theory, History and Applications (Reidel, Dordrecht, 1982).

    Google Scholar 

  8. G. N. Panin, Heat and Mass Exchange between a Water Body and the Utmosphere under Natural Conditions (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  9. R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer, Dordrecht, 1988).

    Google Scholar 

  10. L. G. Elagina, S. L. Zubkovskii, B. M. Koprov, and D. Yu. Sokolov, “Experimental Study of the Heat Balance on the Soil Surface,” in Trudy GGO, No. 296: Complex Energetics Experiment (KONEKS-71) (Gidrometeoizdat, Leningrad, 1973) [in Russian].

    Google Scholar 

  11. L. Mahrt, “Flux Sampling Errors for Aircraft and Towers,” J. Atmos. and Ocean. Technol. 15, 416–429 (1998).

    Article  Google Scholar 

  12. G. N. Panin, G. Tetzlaff, and A. Raabe, “Inhomogeneity of the Land Surface and Problem in Parametrization of the Surface Fluxes in Natural Conditions,” Theor. Appl. Clim. 60, 163–178 (1998).

    Article  Google Scholar 

  13. M. I. Mordukhovich and L. R. Tsvang, “Direct Measurements of Turbulent Fluxes at Two Heights in the Surface Air Layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 2(8), 786–803 (1966).

    Google Scholar 

  14. B. M. Koprov and D. Yu. Sokolov, “Experimental Study of Variations in Heat Fluxes in the Surface Air Layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 11(77), 743–747 (1975).

    Google Scholar 

  15. V. P. Kukharets and L. R. Tsvang, “Variations in the Underlying Surface Temperature and the Problem of Closure of the Heat Balance Equations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 35(2), 207–214 (1999) [Izv., Atmos. Ocean. Phys. 35(2), 188–194 (1999)].

    Google Scholar 

  16. Th. Foken, W. Gerstmann, S. H. Richter, et al., “Study of the Energy Exchange Processes over Different Types of Surface during TARTEX-90,” (DWD, Abteilung Forschung, Arbeitsergebnisse, 1993).

    Google Scholar 

  17. Ch. Bernhofer, L. W. Gay, A. Granier, et al., “The Hart X-Synthesis: An Experimental Approach to Water and Carbon Exchange of a Scots Pine Plantation,” Theor. Appl. Climatol. 53, 173–183 (1966).

    Article  Google Scholar 

  18. G. N. Panin and A. E. Nasonov, “Problems of Measurement, Calculation, and Parametrization of Overland Surface Fluxes,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 32(4), 448–455 (1996) [Izv., Atmos. Ocean. Phys. 32(4), 411–418 (1996)].

    Google Scholar 

  19. G. N. Panin and A. E. Nasonov, “Problems of Measurement and Calculation of Surface Fluxes in KUREX-91 Experiment,” Remote Sensing Rev. 17, 281–290 (1998).

    Google Scholar 

  20. J. Laubach and U. Teichmann, “Surface Energy Budget Variability: A Case Study over Grass with Special Regard to Minor Inhomogeneities in the Source Area,” Theor. Appl. Climatol. 61, 9–24 (1999).

    Article  Google Scholar 

  21. S. Aoki, J. Asanuma, J. Kim, et al., “Scaling Analysis of the Turbulence Heat Transfer over the Tibetan Plateau with Wavelet Transform of the Naqu Flux Site Data during GAME-Tibet IOP’98,” in Proceedings of GAME ANN/Radiation Workshop (Phuket, 2001), pp. 79–80.

  22. J. Kum, Y. Harazono, S. Yamamoto, et al., “Flux Measurements in Complex Landscape: How Reliable and Consistent are Fluxes from a Single Eddy Covariance Tower?” in Proceedings of GAME ANN/Radiation Workshop (Phuket, 2001), pp. 83–84.

  23. G. N. Panin, W. Kohsiek, and A. E. Nasonov, “Interaction between Atmosphere and Natural Land Surface,” in Proceedings of Fifth International Study Conference of GEWEX in Asia and GAME (2001), No. 31, pp. 42–47.

  24. K. Tanaka and H. Ishikawa, “Long-Term Monitoring of Surface Energy Fluxes at Amdo in the Eastern Tibetan Plateau,” in Proceedings of GAME ANN/Radiation Workshop (Phuket, 2001), pp. 40–43.

  25. J. Wang, “The Correction of Flux Measurements in GAME-Tibet,” in Proceedings of GAME ANN/Radiation Workshop (Phuket, 2001), pp. 81–82.

  26. Y. G. Mengesha, P. A. Taylor, and D. H. Lenscow, “Boundary-Layer Turbulence over the Nebraska Sandhills,” Bound.-Layer Meteorol. 100, 3–46 (2001).

    Article  Google Scholar 

  27. D. Cava, U. Giostra, and M. Tagliazucca, “Spectral Maxima in a Perturbed Stable Boundary Layer,” Bound.-Layer Meteorol. 100, 421–437 (2001).

    Article  Google Scholar 

  28. R. K. Sakai, D. R. Fitzjarrald, and K. E. Moore, “Importance of Low-Frequency Contributions to Eddy Fluxes Observed over Rough Surfaces,” Q. J. R. Meteorol. Soc. 118, 191–225 (2001).

    Google Scholar 

  29. J. J. Finnigan, R. Clement, Y. Malhi, et al., “A Re-Evaluation of Longterm Flux Measurement Techniques: Part 1. Averaging and Coordinate Rotation,” Bound.-Layer Meteorol. 107, 1–48 (2003).

    Article  Google Scholar 

  30. J. Finnigan, “Advection and Modelling,” in Handbook on Micrometeorology, Ed. by X. Lee, W. Massman, and B. Law (Kluwer, Dordrecht, 2005), pp. 209–244.

    Chapter  Google Scholar 

  31. M. Aubinet, P. Berbigier, C. Bernhofer, et al., “Comparing CO2 Storage and Advection Conditions at Night at Different CarboEuroflux Sites,” Bound.-Layer Meteorol. 116, 63–94 (2005).

    Article  Google Scholar 

  32. M. Aubinet, B. Heinesch, and M. Yernaux, “Horizontal and Vertical CO2 Advection in a Sloping Forest,” Bound.-Layer Meteorol. 108, 397–417 (2003).

    Article  Google Scholar 

  33. A. P. Van Ulden and J. Wieringa, “Atmospheric Boundary Layer Research at Cabauw,” Bound.-Layer Meteorol. 78, 39–69 (1996).

    Article  Google Scholar 

  34. J. B. Stewart and A. S. Thom, “Energy Budget in Pine Forest,” Q. J. R. Meteorol. Soc. 99, 154–170 (1973).

    Article  Google Scholar 

  35. R. Van Dorland, P. Stammes, A. A. M. Holtslag, et al., “A Long Wave Radiation Transfer Scheme for Climate Modeling and Its Evaluation with Surface Observations at Cabauw,” in Radiation and Climate. From Radiative Transfer Modeling to Global Temperature Response (ISBN, 1999).

  36. F. Beyrich, S. H. Richter, U. Weisensee, et al., “Experimental Determination of Turbulent Fluxes over the Heterogeneous LITFASS Area: Selected Results from the LITFASS-98 Experiment,” Theor. Appl. Climatol. 73, 19–34 (2002).

    Article  Google Scholar 

  37. T. Foken, M. Göckede, M. Mauder, et al., “Post-Field Data Quality Control,” in Handbook and of Micrometeoroly: A Guide for Surface Flux Measurement Analysis, Ed. by X. Lee, W.J. Massman, and B. Law (Kluwer, Dordrecht, 2004), pp. 181–208.

    Google Scholar 

  38. C. Von Randow, A. O. Manzi, B. Kruijt, et al., “Comparative Measurements and Seasonal Variations in Energy and Carbon Exchange over Forest and Pasture in South West Amazoina,” Theor. Appl. Climatol. 78, 5–26 (2004).

    Google Scholar 

  39. J. C. Kaimal and J. J. Finnigan, Atmospheric Boundary Layer Flows: Their Structure and Measurement (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  40. P. A. Taylor, R. I. Sykes, and P. J. Mason, “On the Parametrization of Drag over Small-Scale Topography in Neutrally Stratified Boundary Layer Flow,” Bound.-Layer Meteorol. 48, 409–422 (1989).

    Article  Google Scholar 

  41. J. S. Bendat and A. G. Piersol, Measurement and Analysis of Random Data (New York, 1967).

  42. O. G. Khutorova and G. E. Korchagin, “Studying the Spatial Structure of Mesoscale Variations in Tropospheric Aerosol by Using Different Methods,” Opt. Atmos. Okeana 14, 630–632 (2001).

    Google Scholar 

  43. G. N. Panin and G. Tetzlaff, “A Measure of Inhomogeneity of the Land Surface and Parametrization of the Turbulent Fluxes in Natural Conditions,” Theor. Appl. Climatol. 62, 3–8 (1999).

    Article  Google Scholar 

  44. J. J. M. De Jong, A. C. de Vries, and W. Klaasen, “Influence of Obstacles on the Aerodynamic Roughness of the Netherlands,” Bound.-Layer Meteorol. 91, 51–64 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Panin.

Additional information

Original Russian Text © G.N. Panin, Ch. Bernhofer, 2008, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2008, Vol. 44, No. 6, pp. 755–772.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panin, G.N., Bernhofer, C. Parametrization of turbulent fluxes over inhomogeneous landscapes. Izv. Atmos. Ocean. Phys. 44, 701–716 (2008). https://doi.org/10.1134/S0001433808060030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433808060030

Keywords

Navigation