Skip to main content
Log in

Combined chemistry-climate model of the atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A combined three-dimensional global model of the chemistry and dynamics of the lower and middle atmosphere (up to 90 km from the Earth’s surface) is described. With the use of this model within the AMIP2 (1979–1995) program, numerical calculations were performed with consideration for the interactive coupling between the ozone content, radiation heating, and atmospheric circulation. Comparisons were made between calculated and observed data on the ozone content and temperature. Heterogeneous processes on the surface of polar stratospheric clouds were shown to be important for a correct simulation of the spatial and temporal distribution of atmospheric ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Eyring, N. R. P. Harris, M. Rex, et al. “A Strategy for Process-Oriented Validation of Coupled Chemistry-Climate Models,” Bull. Am. Meteorol. Soc. 86, 1117–1133 (2005).

    Article  Google Scholar 

  2. V. A. Alekseev, E. M. Volodin, V. Ya. Galin, et al. “Modeling the Present-Day Climate with the INM RAS Atmospheric Model,” Preprint No. 2086-A98, IVM RAN (Inst. of Numerical Mathematics, Moscow, 1998).

    Google Scholar 

  3. Scientific Assessment of Ozone Depletion: 2002, WMO Global Ozone Research and Monitoring Project Report No. 47 (Geneva, 2003).

  4. S. Solomon, “The Mystery of the Antarctic Ozone Hole,” Rev. Geophys. 26, 131–148 (1988).

    Google Scholar 

  5. IPCC (Intergovernmental Panel on Climate Change), Climate Change 2001: The Scientific Basis: Third Assessment Report of the Intergovernmental Panel on Climate Change, Eds. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  6. S. P. Smyshlyaev, V. L. Dvortsov, M. A. Geller, and V. A. Yudin, “A Two Dimensional Model with Input Parameters from a GCM: Ozone Sensitivity to Different Formulation for the Longitudinal Temperature Variation,” J. Geophys. Res. 103, 28 373–28 387 (1998).

    Article  Google Scholar 

  7. V. A. Yudin, S. P. Smyshlyaev, M. A. Geller, and V. L. Dvortsov, “Transport Diagnostics of GCMs and Implications for 2-D Chemistry-Transport Model of Troposphere and Stratosphere,” J. Atmos. Sci. 57, 673–699 (2000).

    Article  Google Scholar 

  8. V. Ya. Galin, E. M. Volodin, and S. P. Smyshlyaev, “INM RAS Atmospheric General Circulation Model with Ozone Dynamics,” Meteorol. Gidrol., No. 5, 13–23 (2003).

  9. A. A. Arakawa and V. R. Lamb, “A Potential Enstrophy and Energy Conserving Scheme for Shallow Water Equations,” Mon. Weather Rev. 109, 18–36 (1981).

    Article  Google Scholar 

  10. V. Ya. Galin, “Parametrization of Radiative Processes in the DNM Atmospheric Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34, 380–389 (1998) [Izv., Atmos. Ocean. Phys. 34, 339–347 (1998)].

    Google Scholar 

  11. B. R. Briegleb, “Delta-Eddington Approximation for Solar Radiation in the NCAR Community Climate Model,” J. Geophys. Res. D 97, 7603–7612 (1992).

    Google Scholar 

  12. A. K. Betts, “A New Convective Adjustment Scheme. Part 1. Observational and Theoretical Basis,” Q. J. R. Meteorol. Soc. 112(473), 677–691 (1986).

    Google Scholar 

  13. T. N. Palmer, G. J. Shutts, and R. Swinbank, “Alleviation of a Systematic Westerly Bias in General Circulation and Numerical Weather Prediction Models through an Orographic Gravity Wave Drag Parameterization,” Q. J. R. Meteorol. Soc. 112(474), 1001–1031 (1986).

    Article  Google Scholar 

  14. C. O. Hines, “Doppler Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere. Part 1. Basic Formulation,” J. Atmos. Sol. Terr. Phys. 59, 371–386 (1997).

    Article  Google Scholar 

  15. C. O. Hines, “Doppler Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere. Part 1. Broad and Quasimonochromatic Spectra, and Implementation,” J. Atmos. Sol. Terr. Phys. 59(4),387–400 (1997).

    Article  Google Scholar 

  16. R. de Zafra and S. Smyshlyaev, “On the Formation of HNO3 in the Antarctic Mid-to-Upper Stratosphere in Winter,” J. Geophys. Res. D 106, 23 115–23 125 (2001).

    Article  Google Scholar 

  17. Modern Numerical Methods for Ordinary Differential Equations, Eds. by G. Hall and J. Watt (Oxford Univ. Press, Oxford, 1976; Mir, Moscow, 1979).

    Google Scholar 

  18. S. P. Smyshlyaev, “Optimization of an Algorithm of Numerically Solving the Equations of a Two-Dimensional Zonal Mean Photochemical Model,” in Atmospheric Ozone (Politekhnicheskii Inst., Leningrad, 1991), pp. 45–54 [in Russian].

    Google Scholar 

  19. V. L. Dvortsov, S. G. Zvenigorodsky, and S. P. Smyshlyaev, “On the Use of Isaksen-Luther Method of Computing Photodissociation Rates in Photochemical Models,” J. Geophys. Res. D 97, 7593–7601 (1992).

    Google Scholar 

  20. A. Tabazadeh, R. P. Turco, K. Drdla, and M. Z. Jacobson, “A Study of Type I Polar Stratospheric Cloud Formation,” Geophys. Rev. Lett. 21, 1619–1622 (1994).

    Article  Google Scholar 

  21. S. P. Smyshlyaev, Theoretical Study of Natural and Anthropogenic Forcings on the Long-Period Variability of Atmospheric Ozone, Extended Abstract of Doctoral Dissertation in Mathematics and Physics (LTA, St. Petersburg, 2003).

    Google Scholar 

  22. K. Carslaw, B. Luo, T. Peter, An analytic Expression for the Composition of AqueousHNO3+H2SO4 Stratospheric Aerosols Including Gas Phase Removal of HNO3,” Geophys. Res. Lett. 22, 1877–1880, doi:10.1029/95GL01668 (1995).

    Article  Google Scholar 

  23. D. B. Considine, A. R. Douglass, P. S. Connell, et al., “A Polar Stratospheric Cloud Parameterization for the Global Modeling Initiative Three-Dimensional Model and Its Response to Stratospheric Aircraft,” J. Geophys. Res. 105, 3955–3973, doi:10.1029/1999JD900932 (2000).

    Article  Google Scholar 

  24. R. de Zafra, G. Muscari, and S. Smyshlyaev, “On the Cryogenic Removal of NOy from the Antarctic Polar Stratosphere,” Ann. Geophys. 46, 285–294 (2003).

    Google Scholar 

  25. R. de Zafra, G. Muscari, and S. Smyshlyaev, “On the Cryogenic Removal of NOy from the Antarctic Polar Stratosphere,” Ann. Geophys. 46, 285–294 (2003).

    Google Scholar 

  26. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Jet Propulsion Laboratory Report. No. 02.25 (2003), http://jpldataeval.jpl.nasa.gov/.

  27. V. N. Glukhov, Implementation of Climate Models on Multiprocessor Computing Systems of Cluster Type, Candidate’s Dissertation in Mathematics and Physics (Matematicheskii Inst. RAN, Moscow, 2003).

    Google Scholar 

  28. E. L. Fleming, S. Chandra, J. J. Barnett, and M. Corney, “Zonal Mean Temperature, Pressure, Zonal Wind and Geopotential Height As Functions of Latitude,” Adv. Space Res. 10(12), 11–59 (1990).

    Article  Google Scholar 

  29. E. Kalnay and M. Kanamitsu, et al. “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  30. W. C. Wang, X. Z. Liang, M. P. Dudek, et al., “Atmospheric Ozone As a Climate Gas,” Atmos. Res. 37, 247–256 (1995).

    Article  Google Scholar 

  31. R. D. McPeters, P. K. Bharita, A. J. Krueger, and J. R. Herman, “Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide,” NASA Reference Publication 1384 (1996).

  32. E. M. Volodin and G. Schmitz, “A Troposphere-Stratosphere-Mesosphere General Circulation Model with Parameterization of Gravity Waves: Climatology and Sensitivity Studies,” Tellus A 53, 300–316 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Galin.

Additional information

Original Russian Text © V.Ya. Galin, S.P. Smyshlyaev, E.M. Volodin, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 4, pp. 347–452.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galin, V.Y., Smyshlyaev, S.P. & Volodin, E.M. Combined chemistry-climate model of the atmosphere. Izv. Atmos. Ocean. Phys. 43, 399–412 (2007). https://doi.org/10.1134/S0001433807040020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433807040020

Keywords

Navigation