Skip to main content
Log in

Modeling of the lower ionosphere climate

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A coupled model of the troposphere-stratosphere-mesosphere and the ionospheric D region (for 0–90 km altitudes) is presented. The model is based on a three-dimensional general atmospheric circulation model in a hybrid coordinate system. A five-component model has been taken as a photochemical model for the lower ionosphere. The role of the neutral atmosphere thermodynamic characteristics in the formation of the D layer mean state has been investigated by the model results. Based on a preliminary model identification using direct measurements, and radiowave absorption and propagation, it has been indicated that the model satisfactorily reproduces climatic characteristics of the ionospheric D layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Volodin, V. Ya. Galin, A. V. Gusev, et al., “Earth system model of INM RAS,” Russ. J. Numer. Anal. Math. Modell. 25(5), 531–545 (2010).

    Google Scholar 

  2. D. V. Kulyamin and V. P. Dymnikov, “A three-dimensional model of general thermospheric circulation,” Russ. J. Numer. Anal. Math. Modell. 28(4), 353–380 (2013).

    Article  Google Scholar 

  3. D. V. Kulyamin and V. P. Dymnikov, “The atmospheric general circulation model with a hybrid vertical coordinate,” Russ. J. Numer. Anal. Math. Modell. 29(6), 355–373 (2014).

    Article  Google Scholar 

  4. G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere (Springer, Dordrecht, 2005).

    Google Scholar 

  5. J. R. Holton, An Introduction to Dynamic Meteorology (Academic, New York, 1972).

    Google Scholar 

  6. M. P. Baldwin and T. J. Dunkerton, “Propagation of the Arctic oscillation from the stratosphere to the troposphere,” J. Geophys. Res. 104(D24), 30937–30946 (1999).

    Article  Google Scholar 

  7. J. R. Holton, “The dynamics of sudden stratospheric warmings,” Annu. Rev. Earth Planet. Sci. 8, 169–190 (1980).

    Article  Google Scholar 

  8. D. V. Kulyamin, E. M. Volodin, and V. P. Dymnikov, “Simulation of the quasi-biennial oscillations of the zonal wind in the equatorial stratosphere: Part I. Low-parameter models,” Izv., Atmos. Ocean. Phys. 44(1), 3–17 (2008).

    Google Scholar 

  9. D. V. Kulyamin, E. M. Volodin, and V. P. Dymnikov, “Simulation of the quasi-biennial oscillations of the zonal wind in the equatorial stratosphere: Part II. atmospheric general circulation models,” Izv., Atmos. Ocean. Phys. 45(1), 37–54 (2009).

    Article  Google Scholar 

  10. S. Chapman and R. S. Lindzen, Atmospheric Tides (D. Reidel, New York, 1970).

    Google Scholar 

  11. R. W. Schunk and A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge University Press, Cambridge, 2009).

    Book  Google Scholar 

  12. M. Friedrich and M. Rapp, “News from the lower ionosphere: A review of recent developments,” Surv. Geophys. 30(6), 525–559 (2009).

    Article  Google Scholar 

  13. K. Davies, Ionospheric Radio (IEEE Electromagnetic Waves Series) (Peregrinus, London, 1990).

    Google Scholar 

  14. K. G. Budden, Radio Waves in the Ionosphere: The Mathematical Theory of the Reflection of Radio Waves from Stratified Ionised Layers (Cambridge University Press, Cambridge, 1961).

    Google Scholar 

  15. J. R. Wait, “On the propagation of ELF Radio waves and the influence of a non-homogeneous ionosphere,” J. Geophys. Res. 65(2), 597–600 (1960).

    Article  Google Scholar 

  16. R. M. Bloom, Effect of powerful oblique HF waves on ionospheric D-layer absorption, Pacific-Sierra Research Corporation Rep. 2360 (1993).

    Google Scholar 

  17. U. S. Inan, M. Golkowski, D. L. Carpenter, et al., “Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater,” Geophys. Res. Lett. 31(24), L24805 (2004).

    Article  Google Scholar 

  18. K. Folkestad, T. Hagfors, and S. Westerlund, “EISCAT: An updated description of technical characteristics and operational capabilities,” Radio Sci. 18(6), 867–879 (1983).

    Article  Google Scholar 

  19. R. S. Narcisi and A. D. Bailey, “Mass spectrometer measurements of positive ions at altitudes from 64 to 112 kilometers,” J. Geophys. Res. 70(15), 3687–3700 (1965).

    Article  Google Scholar 

  20. E. Turunen, H. Matveinen, J. Tolvanen, and H. Ranta, “D-region ion chemistry model,” in STEP Handbook of Ionospheric Models, Ed. by R. W. Schunk (Utah State University, Logan, 1996), pp. 1–25.

    Google Scholar 

  21. A. P. Mitra and J. N. Rowe, “Ionospheric effects of solar flares VI. Changes in D-region ion chemistry during solar flares,” J. Atmos. Terr. Phys. 34, 795–806 (1972).

    Article  Google Scholar 

  22. A. A. Tomko, A. J. Ferraro, H. S. Lee, and A. P. Mitra, “A theoretical model of D-Region ion chemistry modifications during high power radio wave heating,” J. Atmos. Terr. Physics 42, 275–285 (1980).

    Article  Google Scholar 

  23. S. I. Kozlov, N. V. Smirnova, and V. A. Vlaskov, “Ion kinetics, minor neutral and excited constituents of the D-region with an increased level of ionization. Part 1: Formulation of the problem and a general scheme for the processes,” Kosm. Issled. 20(6), 881–891 (1982).

    Google Scholar 

  24. J. Taubenheim, “Meteorological control of the D-region,” Space Sci. Rev. 34, 397–411 (1983).

    Article  Google Scholar 

  25. N. V. Smirnova, A. G. Simonov, and A. D. Danilov, “Influence of temperature and humidity on aeronomic parameters in the upper part of the D-region,” Geomagn. Aeron. 23(5), 733–737 (1983).

    Google Scholar 

  26. A. A. Egoshin, V. M. Ermak, Yu. I. Zetzer, et al., “Influence of meteorological and wave processes on the lower ionosphere during solar minimum conditions according to the data on midlatitude VLF-LF propagation,” Izv., Phys. Solid Earth 48(3), 275–285 (2012).

    Article  Google Scholar 

  27. J. Taubenheim, “Some new aspects of the winter anomaly of ionospheric absorption,” J. Atmos. Terr. Phys. 33(9), 1481–1485 (1971).

    Article  Google Scholar 

  28. E. S. Kazimirovski, “Coupling from below as a source of ionospheric variability: A review,” Ann. Geophys. 45(1), 1–29 (2002).

    Google Scholar 

  29. M. Friedrich and K. M. Torkar, “FIRI: A semiempirical model of the lower ionosphere,” J. Geophys. Res. 106(A10), 21409–21418 (2001).

    Article  Google Scholar 

  30. L. F. McNamara, “A statistical model of the D-region,” Radio Sci. 14, 1165–1173 (1979).

    Article  Google Scholar 

  31. V. V. Belikovich, E. A. Benediktov, and V. D. Vyakhirev, “Empirical model of the distribution of electron concentration of the midlatitude D-region of the ionosphere,” Geomagn. Aeron. 32(6), 95–103 (1992).

    Google Scholar 

  32. J. D. Mathews, J. K. Breakall, and S. Ganguly, “The measurement of diurnal variations of electron concentration in the 60 to 100 km ionosphere at Arecibo,” J. Atmos. Terr. Phys. 4(5), 441–448 (1982).

    Article  Google Scholar 

  33. J. L. Chau and R. F. Woodman, “D and E region incoherent scatter radar density measurements over Jicamarca,” J. Geophys. Res. 110, A12314 (2005). doi 10.1029/2005JA011438

    Article  Google Scholar 

  34. J. K. Hargreaves and M. Friedrich, “The estimation of D-region electron densities from riometer data,” Ann. Geophys. 21(2), 603–613 (2003).

    Article  Google Scholar 

  35. A. P. Mitra, “Chemistry of middle atmospheric ionization—a review,” J. Atmos. Terr. Phys. 43(8), 737–752 (1983).

    Article  Google Scholar 

  36. P. T. Verronen, E. Turunen, Th. Ulich, et al., “Modelling the effects of the October 1989 solar proton event on mesospheric NO using a detailed ion and neutral chemistry model,” Ann. Geophys. 20(12), 1967–1976 (2002).

    Article  Google Scholar 

  37. L. A. Zhuravleva and V. P. Kudryavtsev, “Nonstationary photochemical model of minor constituents of the Middle Atmosphere,” in Dynamical Processes in Geospheres: Geophysics of Strong Disturbances (IDG RAN, Moscow, 1994), pp. 191–204 [in Russian].

    Google Scholar 

  38. R. G. Roble and E. C. Ridley, “A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30–500 km),” Geophys. Res. Lett. 21(6), 417–420 (1994).

    Article  Google Scholar 

  39. D. V. Kulyamin and V. P. Dymnikov, “Simulation of the general circulation of the troposphere-stratosphere—mesosphere with the Ionospheric D-region,” Geliogeofizicheskie Issled. 10, 5–46 (2014). http://vestnik.geospace.ru/index.php?id=212.

    Google Scholar 

  40. E. M. Volodin and G. Schmitz, “A troposphere-stratosphere-mesosphere general circulation model with parameterization of gravity waves: Climatology and sensitivity studies,” Tellus 53(3), 300–316 (2001).

    Article  Google Scholar 

  41. E. M. Volodin and V. N. Lykosov, “Parametrization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data,” Izv., Atmos. Ocean. Phys. 34(4), 405–416 (1998).

    Google Scholar 

  42. T. N. Palmer, G. J. Shutts, and R. Swinbank, “Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization,” Q. J. R. Meteorol. Soc. 112(474), 1001–1031 (1986).

    Article  Google Scholar 

  43. C. O. Hines, “Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1: Basic formulation,” J. Atmos. Terr. Phys. 59(4), 371–386 (1997).

    Article  Google Scholar 

  44. V. Ya. Galin, “Parametrization of radiative processes in the DNM atmospheric model,” Izv., Atmos. Ocean. Phys. 34(3), 339–347 (1998).

    Google Scholar 

  45. V. P. Kudryavtsev and N. Yu. Romanyukha, “Simulation of ionization-recombination processes in the middle atmosphere,” Mat. Model. 7(3), 3–18 (1995).

    Google Scholar 

  46. G. E. Thomas and R. F. Krassa, “OGO-5 measurements of the Lyman-alpha sky background in 1970 and 1971,” Astron. Astrophys. 30, 223–232 (1974).

    Google Scholar 

  47. H. H. Sauer and D. C. Wilkinson, “Global mapping of ionospheric HF/VHF radio wave absorption due to solar energetic protons,” Space Weather 6(12), 12002 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kulyamin.

Additional information

Original Russian Text © D.V. Kulyamin, V.P. Dymnikov, 2015, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2015, Vol. 51, No. 3, pp. 317–337.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulyamin, D.V., Dymnikov, V.P. Modeling of the lower ionosphere climate. Izv. Atmos. Ocean. Phys. 51, 272–291 (2015). https://doi.org/10.1134/S0001433815030068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815030068

Keywords

Navigation