Skip to main content
Log in

Modeling of vertical heat and moisture transfer and carbon exchange in the soil-vegetation-atmosphere system

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A physical and mathematical model of the vertical heat and moisture transfer and the carbon exchange in the soil-vegetation-atmosphere system is proposed that includes the interaction between these processes. The model describes the interception of precipitation by plants and its further evaporation, transpiration, evaporation from a soil surface as well as vertical moisture transfer, photosynthesis, and plant and soil respiration. The model has been verified against data from observations of heat, moisture, and carbon dioxide fluxes at a grassland site (international FIFE experiment, Kansas, United States), in a pine forest (BOREAS, Saskatoon, Canada), and in a broad-leaved mixed forest (FLUXNET measurements in the southeastern United States). Numerical experiments with the models have been conducted to estimate the influence of soil moisture and atmospheric CO2 concentration on transpiration and carbon exchange of the vegetation cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Monteith, Principles of Environmental Physics (American Elsevier, New York, 1973).

    Google Scholar 

  2. Z. N. Bikhele, Kh. A. Moldau, and Yu. K. Ross, Mathematical Modeling of Transpiration and Photosynthesis of Plants under the Lack of Moisture (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  3. O. D. Sirotenko, Mathematical Modeling of the Water-Heat Regime and Productivity of an Agricultural Ecosystem (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  4. U. Kh. Bratsert, Evaporation in the Atmosphere (Gidrometeoizdat, Leningrad, 1985) [in Russian].

    Google Scholar 

  5. D. Hillel, Introduction to Soil Physics (Academic, New York, 1982).

    Google Scholar 

  6. G. D. Farquhar, S. von Caemmerer, and J. A. Berry, “A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species,” Planta 149, 78–90 (1980).

    Article  Google Scholar 

  7. K. I. Kobak, Biotic Components of the Carbon Cycle (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  8. I. S. Amthor, Respiration and Crop Productivity (Springer, New York, 1989).

    Google Scholar 

  9. D. D. Baldocchi and T. Meyers, “On Using Eco-Physiological, Micro Meteorological and Biochemical Theory to Evaluate Carbon Dioxide, Water Vapor and Trace Gas Fluxes over Vegetation: A Perspective,” Agric. For. Meteorol. 90, 1–25 (1998).

    Article  Google Scholar 

  10. P. M. Cox, C. Huntingford, and R. J. Harding, “A Canopy Conductance and Photosynthesis Model for Use in a GCM Land Surface Scheme,” J. Hydrol. 212–213, 79–94 (1998).

    Article  Google Scholar 

  11. D. D. Baldocchi and K. B. Wilson, “Modeling CO2 and Water Vapor Exchange of a Temperate Broadleaved Forest across Hourly to Decadal Time Scales,” Ecol. Model. 142, 155–184 (2001).

    Article  Google Scholar 

  12. E. M. Gusev, O. N. Nasonova, and L. Ya. Dzhogan, “Modeling of Heat-, Water-, and Carbon-Exchange Processes in a Pine Forest Ecosystem,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 227–241 (2005) [Izv., Atmos. Ocean. Phys. 41, 203–216 (2005)].

    Google Scholar 

  13. L. S. Kuchment and V. N. Demidov, “Modeling the Influence of Hydrologic Processes on the Carbon Cycle of a Forest Ecosystem,” Meteorol. Gidrol., No. 12, 71–81 (2004).

  14. R. E. Dickinson, “Land Surface Processes and Climate-Surface Albedos and Energy Balance,” in Theory of Climate, Ed. by B. Saltzman, Adv. Geophys. 25, 305–353 (1983).

  15. P. G. Jarvis, “The Interpretation of the Variances in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field,” Philos. Trans. R. Soc. London 273, 593–610 (1976).

    Google Scholar 

  16. J. T. Ball, I. E. Woodrow, and J. A. Berry, “A Model Predicting Stomatal Conductance and Its Contribution to the Control of Photosynthesis under Different Environmental Conditions,” in Progress in Photosynthesis Research, Ed. by J. Biggins (Martinus Nijhoff, Netherlands, 1987), pp. 221–224.

    Google Scholar 

  17. L. S. Kuchment, Yu. G. Motovilov, and Z. P. Startseva, “Modeling Moisture Transfer in a Soil-Plant-Atmospheric Boundary Layer for Hydrologic,” Vodn. Resur., No. 7, 22–39 (1989).

  18. L. S. Kuchment and Z. P. Startseva, “Sensitivity of Evapotranspiration and Soil Moisture in Wheat Fields to Changes in Climate and Direct Effects of Carbon Dioxide,” Hydrol. Sci. J. 36, 631–643 (1991).

    Article  Google Scholar 

  19. G. J. Collatz, J. T. Ball, C. Grivet, and J. A. Berry, “Physiological and Environmental Regulation of Stomatal Conductance, Photosynthesis and Transpiration: Model That Includes a Laminar Boundary Layer,” Agric. For. Meteorol. 54, 107–136 (1991).

    Article  Google Scholar 

  20. D. E. Strebel, D. R. Landis, K. F. Huemmrich, and B. W. Meeson, Collected Data of the First ISLSCP Field Experiment, 5 CD-ROM Pack (1990).

  21. P. J. Sellers, F. G. Hall, G. Asrar, et al., “An Overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE),” J. Geophys. Res. D 97, 18345–18371 (1992).

    Article  Google Scholar 

  22. R. B. Clapp and G. M. Hornberger, “Empirical Equations for Some Soil Hydraulic Properties,” Water Resour. Res. 14, 601–604 (1978).

    Article  Google Scholar 

  23. J. M. Norman, R. Garcia, and S. B. Verma, “Soil Surface Fluxes and the Carbon Budget of a Grassland,” J. Geophys. Res. 97(D17), 18845–18853 (1992).

    Google Scholar 

  24. D. D. Baldocchi, C. A. Vogel, and B. Hall, “Seasonal Variation of Carbon Dioxide Exchange Rates above and below a Boreal Jack Pine Forest,” Agric. For. Meteorol. 83, 147–170 (1997).

    Article  Google Scholar 

  25. J. Newcomer, D. Landis, S. Conrad, et al., Collected Data of the Boreal Ecosystem-Atmosphere Study, 12 CD-ROM Pack (2000), 1st ed.

  26. M. T. van Genuchten, “A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soil,” Soil Sci. Soc. Am. J. 44, 892–898 (1980).

    Article  Google Scholar 

  27. C. R. Lloyd, P. Bessemoulin, F. D. Cropy, et al., “A Comparison of Surface Fluxes at the HAPEX—Sahel Fallow Bush Sites,” J. Hydrol. 188–189, 400–425 (1997).

    Article  Google Scholar 

  28. K. B. Wilson, P. J. Hanson, P. J. Mulholland, et al., “A Comparison of Methods for Determining Forest Evapotranspiration and Its Components: Sap-Flow, Soil Water Budget, Eddy Covariance and Catchment Water Balance,” Agric. For. Meteorol. 106, 153–168 (2001).

    Article  Google Scholar 

  29. Database of Observations of Heat, Moisture, and CO2Fluxes on the FLUXNET Network, http://www.fluxnet.ornl.gov/fluxnet/garzirs.sfm.

  30. L. N. Peters, D. F. Grigal, J. W. Curlin, and W. J. Selvidge, Walker Branch Watershed Project: Chemical, Physical and Morphological Properties of the Soils of Walker Branch Watershed (Oak Ridge National Laboratory, Oak Ridge, 1970), ORNL/TM-2968.

    Google Scholar 

  31. K. B. Wilson and D. D. Baldocchi, “Comparing Independent Estimates of Carbon Dioxide Exchange over 5 Years at a Deciduous Forest in the Southeastern United States,” J. Geophys. Res. D 106, 34167–34178 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.S. Kuchment, V.N. Demidov, Z.P. Startseva, 2006, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2006, Vol. 42, No. 4, pp. 539–553.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchment, L.S., Demidov, V.N. & Startseva, Z.P. Modeling of vertical heat and moisture transfer and carbon exchange in the soil-vegetation-atmosphere system. Izv. Atmos. Ocean. Phys. 42, 497–510 (2006). https://doi.org/10.1134/S0001433806040098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433806040098

Keywords

Navigation