Skip to main content
Log in

Persistent currents and magnetic flux trapping in fragments of carbon deposits containing multiwalled nanotubes

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

It is found that the magnetization curves of samples of fragments of cathode carbon deposits with a high content of multiwalled nanotubes exhibit a pronounced irreversible character, attesting to the induction of persistent currents in the samples and to magnetic flux trapping, as happens in a multiply connected superconducting structure. A decrease of the trapped flux in time could not be observed at low (helium) temperatures with a measurement time of about 20 h. For intermediate (∼30 K) and room temperatures the trapped magnetic flux decays slowly with characteristic relaxation times of the order of 150 and 15 h, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Ebbesen, Phys. Today 49, No. 6, 26–32 (June 1996).

    Google Scholar 

  2. R. E. Smalley, Rev. Mod. Phys. 69, 723 (1997).

    Article  ADS  Google Scholar 

  3. S. J. Tans, M. H. Devoret, H. Dai et al., Nature (London) 386, 474 (1997).

    Article  Google Scholar 

  4. M. Bockrath, D. H. Cobden, P. L. McEuen et al., Science 275, 1922 (1997).

    Article  Google Scholar 

  5. C. T. White and T. N. Todorov, Nature (London) 393, 240 (1998).

    Google Scholar 

  6. R. Egger and A. O. Gogolin, http://xxx.lanl.gov/abs/condmat/9803128.

  7. M. Bockrath, D. H. Cobden, J. Lu et al., Nature (London) 397, 598 (1999).

    Google Scholar 

  8. R. C. Haddon, Nature (London) 388, 31 (1997).

    Article  Google Scholar 

  9. M. F. Lin and D. S. Chuu, Phys. Rev. B 57, 6731 (1998).

    ADS  Google Scholar 

  10. A. A. Odintsov, W. Smit, and H. Yoshioka, http://xxx.lanl.gov/abs/cond-mat/9805164.

  11. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).

    Article  ADS  Google Scholar 

  12. N. A. Kiselev, A. P. Moravsky, A. B. Ormont, and D. N. Zakharov, Carbon 37, 1093 (1999).

    Article  Google Scholar 

  13. Null-Balance Magnetometer with Capacitance Sensor, Internal Specification, International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland, 1998.

  14. K. Mendelssohn, Proc. R. Soc. London, Ser. A 152, 34 (1935).

    Google Scholar 

  15. C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).

    Article  ADS  MATH  Google Scholar 

  16. R. C. Haddon, Nature (London) 378, 249 (1995).

    Article  ADS  Google Scholar 

  17. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, California, 1996), p. 836.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pis’ma Zh. Éksp. Teor. Fiz. 70, No. 7, 457–462 (10 October 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsebro, V.I., Omel’yanovskii, O.E. & Moravskii, A.P. Persistent currents and magnetic flux trapping in fragments of carbon deposits containing multiwalled nanotubes. Jetp Lett. 70, 462–468 (1999). https://doi.org/10.1134/1.568197

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.568197

PACS numbers

Navigation