Skip to main content
Log in

Local Magnetic Measurements of Trapped Flux Through a Permanent Current Path in Graphite

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Temperature- and field-dependent measurements of the electrical resistance of different natural graphite samples suggest the existence of superconductivity at room temperature in some regions of the samples. To verify whether dissipationless electrical currents are responsible for the trapped magnetic flux inferred from electrical resistance measurements, we localized them using magnetic force microscopy on a natural graphite sample in remanent state after applying a magnetic field. The obtained evidence indicates that at room temperature a permanent current flows at the border of the trapped flux region. The current path vanishes at the same transition temperature \(T_c\approx 370\) K as the one obtained from electrical resistance measurements on the same sample. This sudden decrease in the phase is different from what is expected for a ferromagnetic material. Time-dependent measurements of the signal show the typical behavior of flux creep of a permanent current flowing in a superconductor. The overall results support the existence of room-temperature superconductivity at certain regions in the graphite structure and indicate that magnetic force microscopy is suitable to localize them. Magnetic coupling is excluded as origin of the observed phase signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.E. Precker, P.D. Esquinazi, A. Champi, J. Barzola-Quiquia, M. Zoraghi, S. Muiños-Landin, A. Setzer, W. Böhlmann, D. Spemann, J. Meijer, T. Muenster, O. Baehre, G. Kloess, H. Beth, Identification of a possible superconducting transition above room temperature in natural graphite crystals. New J. Phys. 18, 113,041 (2016). https://doi.org/10.1088/1367-2630/18/11/113041

    Article  Google Scholar 

  2. W. Muñoz, L. Covaci, F. Peeters, Tight-binding description of intrinsic superconducting correlations in multilayer graphene. Phys. Rev. B 87, 134,509 (2013). https://doi.org/10.1103/PhysRevB.87.134509

    Article  Google Scholar 

  3. G. Volovik, Flat band in topological matter. J. Supercond. Nov. Magn. 26, 2887–2890 (2013). https://doi.org/10.1007/s10948-013-2221-5

    Article  Google Scholar 

  4. S. Peotta, P. Törmä, Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015). https://doi.org/10.1038/ncomms9944

    Article  Google Scholar 

  5. T. Heikkilä, G.E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, in ed. by P. Esquinazi (Springer International Publishing, AG Switzerland, 2016), pp. 123–144

  6. L. Feng, X. Lin, L. Meng, J.C. Nie, J. Ni, L. He, Flat bands near fermi level of topological line defects on graphite. Appl. Phys. Lett. 101, 113,113 (2012). https://doi.org/10.1063/1.4752441

    Article  Google Scholar 

  7. C. Coletti, S. Forti, A. Principi, K. Emtsev, A. Zakharov, K. Daniels, B. Daas, M. Chandrashekhar, T. Ouisse, D. Chaussende, A. MacDonald, M. Polini, U. Starke, Revealing the electronic band structure of trilayer graphene on sic: an angle-resolved photoemission study. Phys. Rev. B 88, 155,439 (2013). https://doi.org/10.1103/PhysRevB.88.155439

    Article  Google Scholar 

  8. D. Pierucci, H. Sediri, M. Hajlaoui, J.C. Girard, T. Brumme, M. Calandra, E. Velez-Fort, G. Patriarche, M.G. Silly, G. Ferro, V. Souliére, M. Marangolo, F. Sirotti, F. Mauri, A. Ouerghi, Evidence for flat bands near the fermi level in epitaxial rhombohedral multilayer graphene. ACS Nano 9, 5432–5439 (2015). https://doi.org/10.1021/acsnano.5b01239

    Article  Google Scholar 

  9. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525(7567), 73 (2015). https://doi.org/10.1038/nature14964

    Article  ADS  Google Scholar 

  10. A. Bianconi, T. Jarlborg, Superconductivity above the lowest earth temperature in pressurized sulfur hydride. EPL Europhys. Lett. 112(3), 37,001 (2015). https://doi.org/10.1209/0295-5075/112/37001

    Article  Google Scholar 

  11. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A.I. Lichtenstein, M.I. Katsnelson, Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice. Phys. Rev. Lett. 112(7), 070,403 (2014). https://doi.org/10.1103/PhysRevLett.112.070403

    Article  Google Scholar 

  12. V. Khodel, V. Shaginyan, Superfluidity in system with fermion condensate. JETP Lett. 51(9), 553 (1990)

    ADS  Google Scholar 

  13. G. Volovik, The Fermi condensate near the saddle point and in the vortex core. JETP Lett. 59(11), 830 (1994)

    ADS  Google Scholar 

  14. N.B. Kopnin, M. Ijäs, A. Harju, T.T. Heikkilä, High-temperature surface superconductivity in rhombohedral graphite. Phys. Rev. B 87(14), 140,503 (2013). https://doi.org/10.1103/PhysRevB.87.140503

    Article  Google Scholar 

  15. D. Pierucci, H. Sediri, M. Hajlaoui, J.C. Girard, T. Brumme, M. Calandra, E. Velez-Fort, G. Patriarche, M.G. Silly, G. Ferro, V. Soulière, M. Marangolo, F. Sirotti, F. Mauri, A. Ouerghi, Evidence for flat bands near the Fermi level in epitaxial rhombohedral multilayer graphene. ACS Nano 9(5), 5432–5439 (2015). https://doi.org/10.1021/acsnano.5b01239

    Article  Google Scholar 

  16. T. Hyart, R. Ojajärvi, T.T. Heikkilä, Two topologically distinct dirac-line semimetal phases and topological phase transitions in rhombohedrally stacked honeycomb lattices. J Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-017-1846-3

    Google Scholar 

  17. W.A. Muñoz, L. Covaci, F.M. Peeters, Tight-binding description of intrinsic superconducting correlations in multilayer graphene. Phys. Rev. B 87(13), 134,509 (2013). https://doi.org/10.1103/PhysRevB.87.134509

    Article  Google Scholar 

  18. P. Esquinazi, T.T. Heikkilä, Y.V. Lysogorskiy, D.A. Tayurskii, G.E. Volovik, On the superconductivity of graphite interfaces. JETP Lett. 100(5), 336–339 (2014). https://doi.org/10.1134/S0021364014170056

    Article  ADS  Google Scholar 

  19. P. San-Jose, E. Prada, Helical networks in twisted bilayer graphene under interlayer bias. Phys. Rev. B 88(12), 121,408 (2013). https://doi.org/10.1103/PhysRevB.88.121408

    Article  Google Scholar 

  20. V.J. Kauppila, F. Aikebaier, T.T. Heikkilä, Flat-band superconductivity in strained Dirac materials. Phys. Rev. B 93(21), 214,505 (2016). https://doi.org/10.1103/PhysRevB.93.214505

    Article  Google Scholar 

  21. K. Antonowich, The effect of microwaves on DC current in an Al–carbon–Al sandwich. physica status solidi (a) 28(2), 497–502 (1975). https://doi.org/10.1002/pssa.2210280214

    Article  ADS  Google Scholar 

  22. K. Antonowicz, Possible superconductivity at room temperature. Nature 247(5440), 358 (1974). https://doi.org/10.1038/247358a0

    Article  ADS  Google Scholar 

  23. P.D. Esquinazi, C.E. Precker, M. Stiller, T.R. Cordeiro, J. Barzola-Quiquia, A. Setzer, W. Böhlmann, Evidence for room temperature superconductivity at graphite interfaces. Quantum Stud. Math. Found (2017). https://doi.org/10.1007/40509-017-0131-0

    Google Scholar 

  24. Y. Kawashima, Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface. AIP Adv. 3(5), 052,132 (2013). https://doi.org/10.1063/1.4808207

    Article  Google Scholar 

  25. Y. Kopelevich, P. Esquinazi, J.H.S. Torres, S. Moehlecke, Ferromagnetic- and superconducting-like behavior of graphite. J. Low Temp. Phys. 119(5–6), 691–702 (2000). https://doi.org/10.1023/A:1004637814008

    Article  ADS  Google Scholar 

  26. J. Pearl, Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65–66 (1964). https://doi.org/10.1063/1.1754056

    Article  ADS  Google Scholar 

  27. P.F. Dahl, Kamerlingh onnes and the discovery of superconductivity: the leyden years, 1911–1914. Hist. Stud. Phys. Sci. 15, 1–37 (1984). https://doi.org/10.2307/27757541

    Article  Google Scholar 

  28. R. Kleiner, W. Buckel, Superconductivity—An Introduction (Wiley, Weinheim, 2016)

    Google Scholar 

  29. R.S. Elliot, Electromagnetics: History, Theory, and Applications (Wiley, New York, 1999)

    Book  Google Scholar 

  30. M. Stiller, J. Barzola-Quiquia, P.D. Esquinazi, S. Sangiao, J.M.D. Teresa, Jan Meijer, Abel B., Functionalized Akiyama tips for magnetic force microscopy measurements. Meas. Sci. Technol. 28(12), 125,401 (2017). https://doi.org/10.1088/1361-6501/aa925e

    Article  Google Scholar 

  31. W. Baumeister, P. Griitter, R. Guckenberger, H.J. Güntherodt, T. Hartmann, H. Heinzelmann, H. Mamin, E. Meyer, D. Pohl, D. Rugar, H. Siegenthaler, U. Staufer, H. Wickramasinghe, W. Wiegrabe, R. Wiesendanger, Scanning Tunneling Microscopy II (Springer, Berlin, 1992). https://doi.org/10.1007/978-3-642-97363-5

    Google Scholar 

  32. J. Simpson, J. Lane, C. Immer, R. Youngquist, Simple analytic expressions for the magnetic field of a circular current loop. NASA Technical Report Server p. 20010038494 (2001)

  33. L. Kong, S.Y. Chou, Quantification of magnetic force microscopy using a micronscale current ring. Appl. Phys. Lett. 70, 2043 (1997). https://doi.org/10.1063/1.118808

    Article  ADS  Google Scholar 

  34. J. Lohau, S. Kirsch, A. Carl, G. Dumpich, E. Wassermann, Quantitative determination of effective dipole and monopole moments of magnetic force microscopy tips. J. Appl. Phys. 86, 3410 (1999). https://doi.org/10.1063/1.371222

    Article  ADS  Google Scholar 

  35. J. Barzola-Quiquia, P. Esquinazi, M. Rothermel, D. Spemann, T. Butz, N. García, Experimental evidence for two-dimensional magnetic order in proton bombarded graphite. Phys. Rev. B 76, 161,403(R) (2007). https://doi.org/10.1103/PhysRevB.76.161403

    Article  Google Scholar 

  36. P. Esquinazi, J. Barzola-Quiquia, D. Spemann, M. Rothermel, H. Ohldag, N. García, A. Setzer, T. Butz, Magnetic order in graphite: experimental evidence, intrinsic and extrinsic difficulties. J. Magn. Magn. Mater. 322, 1156–1161 (2010). https://doi.org/10.1016/j.jmmm.2009.06.038

    Article  ADS  Google Scholar 

  37. D. Spemann, P. Esquinazi, Evidence for magnetic order in graphite from magnetization and transport measurements, in Springer Series in Materials Science 244, ed. by P. Esquinazi (Springer International Publishing AG, Basel, 2016), pp. 45–76

    Google Scholar 

  38. A. Gurevich, H. Küpfer, Time scales of the flux creep in superconductors. Phys. Rev. B 48, 6477 (1993). https://doi.org/10.1103/PhysRevB.48.6477

    Article  ADS  Google Scholar 

  39. V. Vlasko-Vlasov, U. Welp, G. Crabtree, D. Gunter, V. Kabanov, V. Nikitenko, Meissner holes in superconductors. Phys. Rev. B 56, 5622–5630 (1997). https://doi.org/10.1103/PhysRevB.56.5622

    Article  ADS  Google Scholar 

  40. V. Vlasko-Vlasov, U. Welp, G. Crabtree, D. Gunter, V. Kabanov, V. Nikitenko, L. Paulius, Meissner holes and turbulent structures in superconductors in unidirectional and rotating fields. Phys. Rev. B 58, 3446–3456 (1998). https://doi.org/10.1103/PhysRevB.58.3446

    Article  ADS  Google Scholar 

  41. C. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt, H. Kronmüller, Magneto-optical studies of current distributions in \(\text{ high-t }_c\) superconductors. Rep. Prog. Phys. 65, 651–788 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Henning Beth for providing us with the natural graphite sample from Sri Lanka, and A. Setzer for the XRD characterization. C.E.P. gratefully acknowledges the support provided by The Brazilian National Council for the Improvement of Higher Education (CAPES). M. S. and J. B. Q. are supported by the DFG collaboration project SFB762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Stiller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiller, M., Esquinazi, P.D., Quiquia, J.B. et al. Local Magnetic Measurements of Trapped Flux Through a Permanent Current Path in Graphite. J Low Temp Phys 191, 105–121 (2018). https://doi.org/10.1007/s10909-018-1859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1859-6

Keywords

Navigation