Skip to main content
Log in

Structural phase transition in a large cluster

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of a phase transition between structures in a large cluster with a pair interatomic interaction on the thermodynamic parameters of the cluster is analyzed. The statistical parameters of a cluster consisting of 923 atoms are determined for an icosahedron and a face-centered cubic (fcc) structure. The specific heat and entropy of this cluster are calculated in the case when the transition between the icosahedron and fcc structures has the greatest effect on these parameters, so that at zero temperature this cluster has the structure of an icosahedron, and as the temperature increases to the melting point it assumes an fcc structure. Even with this, the contribution of the excitations of the atomic configurations to the thermodynamic parameters of a cluster is small compared with the excitation of vibrations in the cluster. The contribution of a configurational excitation in the thermodynamic parameters of a cluster becomes substantial for the liquid state of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kihara and S. Koba, J. Phys. Soc. Jpn. 7, 348 (1952).

    Google Scholar 

  2. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986).

    Google Scholar 

  3. G. Leibfried, Gittertheory der Mechanischen und Termischen Eigenschaften den Kristallen (Springer, Berlin, 1965), Vol. VII, Part 2.

    Google Scholar 

  4. C. Bunn, Crystals (Academic, New York, 1964).

    Google Scholar 

  5. N. M. Ashcroft and N. D. Mermin, Solid State Physics (Hort, Rinehart, and Wilson, New York, 1976).

    Google Scholar 

  6. O. Bostanjonglo and B. Kleinschmidt, Z. Phys. A 21, 276 (1977).

    Google Scholar 

  7. E. Schuberth, M. Creuzburg, and W. Müller-Lierheim, Phys. Status Solidi B 76, 301 (1976).

    Google Scholar 

  8. Y. Sonnenblick, E. Alexander, Z. H. Kalman, and I. T. Steinberger, Chem. Phys. Lett. 52, 276 (1977).

    Article  ADS  Google Scholar 

  9. A. L. Mackay, Acta Crystallogr. 15, 916 (1962).

    Google Scholar 

  10. J. W. Lee and G. D. Stein, J. Phys. Chem. 91, 2450 (1987).

    Google Scholar 

  11. J. A. Northby, J. Chem. Phys. 87, 6166 (1987).

    Article  ADS  Google Scholar 

  12. B. W. van de Waal, J. Chem. Phys. 90, 3407 (1989).

    ADS  Google Scholar 

  13. J. A. Northby, J. Xie, D. L. Freeman, and P. Doll, Z. Phys. D 12, 69 (1989).

    Article  Google Scholar 

  14. J. Xie, J. A. Norhtby, D. L. Freeman, and P. Doll, J. Chem. Phys. 91, 612 (1989).

    ADS  Google Scholar 

  15. B. M. Smirnov, Chem. Phys. Lett. 232, 395 (1995).

    Article  Google Scholar 

  16. R. S. Berry, J. Jellinek, and G. Natanson, Phys. Rev. A 30, 919 (1984).

    Article  ADS  Google Scholar 

  17. J. Jellinek, T. L. Beck, and R. S. Berry, J. Chem. Phys. 84, 2783 (1986).

    Article  ADS  Google Scholar 

  18. R. S. Berry, T. L. Beck, H. L. Davis, and J. Jellinek, Adv. Chem. Phys. 90, 75 (1988).

    Google Scholar 

  19. D. J. Wales and R. S. Berry, J. Chem. Phys. 92, 4283 (1990).

    ADS  Google Scholar 

  20. D. J. Wales, Chem. Phys. Lett. 166, 419 (1990).

    Article  Google Scholar 

  21. H. P. Cheng and R. S. Berry, Phys. Rev. A 45, 7969 (1992).

    ADS  Google Scholar 

  22. R. E. Kunz and R. S. Berry, Phys. Rev. E 49, 1895 (1994).

    Article  ADS  Google Scholar 

  23. R. S. Berry, Nature 393, 238 (1998).

    Article  Google Scholar 

  24. R. S. Berry, B. M. Smirnov, and A. Yu. Strizhev, Zh. Éksp. Teor. Fiz. 112, 1082 (1997) [JETP 85, 588 (1997)].

    Google Scholar 

  25. B. M. Smirnov, A. Yu. Strizhev, and R. S. Berry, J. Chem. Phys. 110, 7412 (1999).

    Article  ADS  Google Scholar 

  26. J. P. K. Doye, D. J. Wales, and R. S. Berry, J. Chem. Phys. 103, 4234 (1995).

    Article  ADS  Google Scholar 

  27. S. W. Wang, L. M. Falikov, and A. W. Searcy, Surf. Sci. 143, 609 (1984).

    Article  Google Scholar 

  28. B. M. Smirnov, Phys. Scr. 52, 710 (1995).

    ADS  Google Scholar 

  29. A. Rytkonen, S. Valkealahti, and M. Manninen, J. Chem. Phys. 106, 1888 (1997).

    ADS  Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed. (Nauka, Moscow, 1976, 3rd ed.; Pergamon Press, New York, 1980), Part 1.

    Google Scholar 

  31. H. Reiss, H. L. Frish, and J. L. Lebowitz, J. Chem. Phys. 31, 369 (1959).

    Article  MathSciNet  Google Scholar 

  32. B. M. Smirnov, Usp. Fiz. Nauk 164, 1165 (1994) [Phys. Usp. 37, 1079 (1994)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 117, No. 3, 2000, pp. 562–570.

Original Russian Text Copyright © 2000 by Berry, Smirnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, R.S., Smirnov, B.M. Structural phase transition in a large cluster. J. Exp. Theor. Phys. 90, 491–498 (2000). https://doi.org/10.1134/1.559131

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.559131

Keywords

Navigation