Skip to main content
Log in

Nonlinear percolation conductivity and negative differential resistivity in microcrystalline PbTe layers with an adjustable potential well

  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of electric fields on the electrical conductivity of PbTe films with block sizes smaller than the Debye screening length is studied. As the temperature is varied, a readjustment of the potential well is observed due to thermal spread of barriers with height ϕkT and the expansion of higher barriers. Spatial ensembles, which consist of several blocks that increase rapidly with temperature, are established for each T. This process leads to an increase in the height of the potential barriers as the linear size of these ensembles increases. This determines the potential well in these films and their nonlinear properties, which originate in the nonlinear percolation conductivity of a microscopic crystalline system with intergranular barriers. A comparison with the experimental data of Shklovskii shows that the scale length of the spatial inhomogeneity a=3.7×10−6 cm at T=4.2 K corresponds to the average block size. The value of a increases with temperature, reaching 5×10−4 cm at T=240 K. This mechanism for electrical conductivity is compared with the hopping conductivity with a variable hopping length. The negative differential resistance in the structures examined here is found to be electrothermal in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    ADS  Google Scholar 

  2. V. L. Bonch-Bruevich, I. P. Zvyagin, R. Kaiper, A. G. Mironov, R. Énderlein, and B. Ésser, Electron theory of Disordered Semiconductors [Russian translation], Nauka, Moscow (1981).

    Google Scholar 

  3. N. Mott and E. Davis, Electronic Processes in Noncrystalline Substances [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  4. N. F. Mott, Metal-Insulator Transitions [Russian translation], Nauka, Moscow (1979).

    Google Scholar 

  5. B. I. Shklovskii and A. L. Éfron, Electronic Properties of Doped Semiconductors [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  6. V. N. Lutskii, Phys. Status Solidi A 1, 199 (1970).

    Google Scholar 

  7. Zh. I. Alferov, Fiz. Tekh. Poluprovodn. 32, 1 (1998) [Semiconductors 32, 1 (1998)].

    Google Scholar 

  8. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, Fiz. Tekh. Poluprovodn. 32, 385 (1998) [Semiconductors 32, 343 (1998)].

    Google Scholar 

  9. M. G. Mil’vidskii and V. V. Chaldyshev, Fiz. Tekh. Poluprovodn. 32, 513 (1998) [Semiconductors 32, 457 (1998)].

    Google Scholar 

  10. H. Günterodt and H. Beck, Metallic Glasses [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  11. A. Feltz, Amorphous and Glassy Nonorganic Solids [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  12. A. S. Bakai, Polycluster Amorphous Materials [in Russian], Energoatomizdat, Moscow (1987).

    Google Scholar 

  13. Ping Sheng and J. Klafter, Phys. Rev. B 27, 2583 (1983).

    Article  ADS  Google Scholar 

  14. Yu. F. Komnik, Fiz. Nizkikh Temperatur 8, 115 (1982) [Sov. J. Low Temp. Phys. 8, 57 (1982)].

    Google Scholar 

  15. B. Abeles, Ping Sheng, M. D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975).

    Article  ADS  Google Scholar 

  16. A. M. Glukhov, N. Ya. Fogel’, and A. A. Shablo, Fiz. Tverd. Tela. 28, 1043 (1986) [Sov. Phys. Solid State 28, 583 (1986)].

    Google Scholar 

  17. M. Mostefa and G. Olivier, Solid State Commun. Solid State Commun. 63, 219 (1987).

    Google Scholar 

  18. V. D. Okunev and Z. A. Samoilenko, JETP Lett. 43, 28 (1986).

    ADS  Google Scholar 

  19. V. D. Okunev and Z. A. Samoilenko, JETP Lett. 53, 44 (1991).

    ADS  Google Scholar 

  20. A. P. Gorchakov, Yu. A. Zarif’yants, and O. I. Tananaev, Izv. Akad. Nauk SSSR, Neorg. Mater. 18, 1275 (1982).

    Google Scholar 

  21. Yu. A. Boikov and V. A. Kutasov, Fiz. Tverd. Tela 24, 3192 (1982) [Sov. Phys. Solid State 24, 1813 (1982)].

    Google Scholar 

  22. Z. M. Dashevskii and M. P. Rulenko, Fiz. Tekh. Poluprovodn. 27, 662 (1993) [Semiconductors 27, 366 (1993)].

    Google Scholar 

  23. A. V. Burlak, V. V. Zotov, A. V. Ignatov, A. V. Tyurin, and V. G. Tsukerman, Fiz. Tekh. Poluprovodn. 26, 548 (1992) [Sov. Phys. Semiconductors 26, 311 (1992)].

    Google Scholar 

  24. L. N. Neustroev and V. V. Osipov, Fiz. Tekh. Poluprovodn. 18, 359 (1984) [Sov. Phys. Semicond. 18, 224 (1984)].

    Google Scholar 

  25. L. N. Neustroev and V. V. Osipov, Fiz. Tekh. Poluprovodn. 20, 59 (1986) [Sov. Phys. Semicond. 20, 34 (1986)].

    Google Scholar 

  26. Yu. I. Ravich, B. A. Efimova, and I. A. Smirnov, Methods for Studying Semiconductors as Applied to the Lead Chalcogenides PbTe, PbSe, and PbS [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  27. N. Kh. Abrikosov and L. E. Shelimov, Semiconducting materials based on A IV B VI Compounds [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  28. S. A. Azimov and Sh. B. Atakulov, Kinetic Phenomena in Polycrystalline films of Lead and Bismuth Chalcogenides [in Russian], Izd. “Fan,” Tashkent (1985).

  29. S. V. Plyatsko, Fiz. Tekh. Poluprovodn. 32, 257 (1998) [Semiconductors 32, 231 (1998)].

    Google Scholar 

  30. Yu. A. Bratashevskii, V. D. Okunev, N. N. Pafomov, and Z. A. Samoilenko, Fiz. Tverd. Tela 27, 723 (1985) [Sov. Phys. Solid State 27, 447 (1985)].

    Google Scholar 

  31. Yu. A. Bratashevskii, V. D. Okunev, and Z. A. Samoilenko, Izv. Akad. Nauk SSSR, Neorg. Mater. 21, 1124 (1985).

    Google Scholar 

  32. H. St-Onge and J. N. Walpole, Phys. Rev. B 6, 2337 (1972).

    Article  ADS  Google Scholar 

  33. Yu. G. Troyan, F. F. Sizov, and V. M. Lakeenkov, Ukr. Fiz. Zh. 32, 467 (1987).

    Google Scholar 

  34. B. A. Akimov, A. V. Albul, and E. V. Bogdanov, Neorg. Mater. 28, 2377 (1992).

    Google Scholar 

  35. B. A. Akimov, A. V. Albul, E. V. Bogdanov, and V. Yu. Il’in, Fiz. Tekh. Poluprovodn. 26, 1300 (1992) [Sov. Phys. Semicond. 26, 726 (1992)].

    Google Scholar 

  36. S. Sze, Physics of Semiconductor Devices [Russian translation], Vol. 1, Mir, Moscow (1984).

    Google Scholar 

  37. Yu. A. Bratashevskii, V. D. Okunev, and Z. A. Samoilenko, Izv. Akad. Nauk SSSR, Neorg. Mater. 22, 1568 (1986).

    Google Scholar 

  38. V. F. Gantmakher and I. B. Levinson, Scattering of Charge Carriers in Metals and Semiconductors [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  39. B. Yu. Lototskii and L. K. Chirkin, Fiz. Tverd. Tela 8, 1967 (1966) [Sov. Phys. Solid State 8, 1564 (1966)].

    Google Scholar 

  40. G. J. Korsh and R. S. Muller, Solid State Electron. 21, 1045 (1978).

    Article  ADS  Google Scholar 

  41. V. G. Kovka, R. P. Kormirenko, Yu. V. Kornyushin, Yu. P. Medvedev, and O. V. Tretyak, Fiz. Tekh. Poluprovodn. 16, 2176 (1982) [Sov. Phys. Semiconductors 16, 1404 (1982)].

    Google Scholar 

  42. Y. F. Matare, J. Appl. Phys. 56, 2605 (1984).

    ADS  Google Scholar 

  43. E. I. Gol’dman and A. G. Zhdan, Fiz. Tekh. Poluprovodn. 12, 833 (1978) [Sov. Phys. Semicond. 10, 491 (1978)].

    Google Scholar 

  44. E. I. Gol’dman, A. G. Zhdan, Yu. V. Markin, and P. S. Shul’zhenko, Fiz. Tekh. Poluprovodn. 17, 390 (1983) [Sov. Phys. Semicond. 17, 242 (1983)].

    Google Scholar 

  45. A. Milnes and D. Voigt, Heterojunctions and Metal-semiconductor Junctions [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  46. A. Ya. Vinnikov, A. M. Meshkov, and V. N. Savushkin, Fiz. Tverd. Tela 22, 2989 (1980) [Sov. Phys. Solid State 22, 1745 (1980)].

    Google Scholar 

  47. B. I. Shklovskii, Fiz. Tekh. Poluprovodn. 13, 93 (1979) [Sov. Phys. Semicond. 13, 53 (1979)].

    Google Scholar 

  48. A. Ya. Vinnikov, A. M. Meshkov, and V. N. Savushkin, Fiz. Tverd. Tela 24, 1352 (1982) [Sov. Phys. Solid State 24, 766 (1982)].

    Google Scholar 

  49. E. I. Levin, Fiz. Tekh. Poluprovodn. 18, 255 (1984) [Sov. Phys. Semicond. 18, 158 (1984)].

    Google Scholar 

  50. A. Ya. Vinnikov, A. M. Meshkov, and V. N. Savushkin, Pis’ma Zh. Tekh. Fiz. 6, 726 (1980) [Sov. Tech. Phys. Lett. 6, 312 (1980)].

    Google Scholar 

  51. Sh. B. Atakulov and K. É. Onarkulov, Fiz. Tekh. Poluprovodn. 19, 1324 (1985) [Sov. Phys. Semicond. 19, 811 (1985)].

    Google Scholar 

  52. F. F. Sizov, V. V. Teterkin, Yu. G. Troyan, and V. Yu. Chopik, Optoélektronika is poluprovodn. tekh., No. 12, 47 (1987).

  53. R. N. Tauber, A. A. Machonis, and I. B. Cadoff, J. Appl. Phys. 37, 4855 (1966).

    Article  Google Scholar 

  54. V. D. Okunev and N. N. Pakhomov, Fiz. Tekh. Poluprovodn. 20, 1302 (1986) [Sov. Phys. Semicond. 20, 822 (1986)].

    Google Scholar 

  55. G. M. T. Foley and D. N. Langenberg, Phys. Rev. B 15, 4830 (1977).

    ADS  Google Scholar 

  56. B. I. Shklovskii and A. L. Éfros, Usp. Fiz. Nauk 117, 401 (1975) [Sov. Phys. Usp. 18, 845 (1975)].

    Google Scholar 

  57. B. I. Shklovskii, Fiz. Tekh. Poluprovodn. 10, 1440 (1976) [Sov. Phys. Semicond. 10, 855 (1976)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 116, 276–298 (July 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okunev, V.D., Pafomov, N.N. Nonlinear percolation conductivity and negative differential resistivity in microcrystalline PbTe layers with an adjustable potential well. J. Exp. Theor. Phys. 89, 151–162 (1999). https://doi.org/10.1134/1.558968

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558968

Keywords

Navigation