Skip to main content
Log in

Flattening of vacancy force fields on a kinematic interface between solids

  • Solids: Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that the diffusive formation of the boundary of a crystal moving uniformly over the surface of another crystal should be accompanied by flattening of the displacement fields of the crystal lattice in the vicinity of vacancies. As the relative velocity of the crystals rises, the flattening of vacancies leads to lowering of their dipole moments and an increase in the number of contact atoms on the interface between the crystals. This phenomenon should be manifested most strongly for high rates of relative motion of the bodies and for small contact areas in the nanoscopic range. It is noted that the decrease in the dipole moment of a vacancy into which a contact atom diffuses can be the reason for the passage of the kinematic interface between the contacting crystals into a quasimolten state. It is concluded that friction in a polyatomic contact should differ qualitatively from friction in the monatomic contacts created in atomic-force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Singer, J. Vac. Sci. Technol. A 12, 2605 (1994).

    Article  ADS  Google Scholar 

  2. U. D. Schwarz, O. Zworner, P. Koster, and R. Wiesendanger, Phys. Rev. B 56, 6987, 6997 (1997).

    ADS  Google Scholar 

  3. W. Zhong and D. Tomanek, Phys. Rev. Lett. 64, 3054 (1990).

    Article  ADS  Google Scholar 

  4. Den Nijs Marcel, Phys. Rev. Lett. 64, 435 (1990).

    Google Scholar 

  5. Motohisa Hirano and Kasumasa Shinjo, Phys. Rev. B 41, 11 837 (1990).

    Google Scholar 

  6. M. A. Lantz, S. J. O’ Shea, M. E. Welland, and K. L. Johnson, Phys. Rev. B 55, 10 776 (1997).

  7. R. J. A. Van den Oetelaar and C. F. J. Flipse, Surf. Sci. 384, L828 (1997).

    Google Scholar 

  8. J. B. Sokolov, Thin Solid Films 206, 208 (1991).

    Google Scholar 

  9. A. Buldum and S. Ciraci, Phys. Rev. B 55, 2606 (1997).

    ADS  Google Scholar 

  10. M. E. Levinshtein and S. L. Rumyantsev, Phys. Solid State (St. Petersburg) 35, 953 (1993) [Phys. Solid State 35, 490 (1993)].

    Google Scholar 

  11. V. V. Gorbunov and B. M. Darinskii, Fiz. Tverd. Tela (Leningrad) 34, 1059 (1992) [Sov. Phys. Solid State 34, 565 (1992)].

    Google Scholar 

  12. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  ADS  Google Scholar 

  13. I. Tomlinson, Philos. Mag. 7, 905 (1929).

    Google Scholar 

  14. V. V. Meshcheryakov, Fiz. Tverd. Tela (St. Petersburg) 37, 43 (1995) [Phys. Solid State 37, 20 (1995)].

    Google Scholar 

  15. G. Leibfried and N. Breuer, Point Defects in Metals, Vol. 1: Introduction to the Theory, Springer-Verlag, Berlin-New York (1978) [Russ. transl., Mir, Moscow (1981), p. 188].

    Google Scholar 

  16. V. V. Batygin and I. N. Toptygin, Problems in Electrodynamics, Academic Press, London (1964) [newer edition of Russ. original, Nauka, Moscow (1970), p. 157].

    Google Scholar 

  17. M. A. Krivoglaz, Theory of X-Ray and Thermal Neutron Scattering by Real Crystals, Plenum Press, New York (1969) [Russ. original, Nauka, Moscow (1967), p. 69].

    Google Scholar 

  18. É. L. Nagaev, Usp. Fiz. Nauk 162, 49 (1992) [Sov. Phys. Usp. 35, 747 (1992)].

    Google Scholar 

  19. S. G. Psakh’e and K. P. Zol’nikov, Pis’ma Zh. Tekh. Fiz. 23(14), 44 (1997) [Tech. Phys. Lett. 23(7), 555 (1997)].

    Google Scholar 

  20. V. V. Meshcheryakov, Zh. Éksp. Teor. Fiz. 111, 1845 (1997) [JETP 84, 1010 (1997)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 116, 157–167 (July 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshcheryakov, V.V., Kuznetsov, G.D. & Yuldashev, A.A. Flattening of vacancy force fields on a kinematic interface between solids. J. Exp. Theor. Phys. 89, 86–91 (1999). https://doi.org/10.1134/1.558958

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558958

Keywords

Navigation