Skip to main content
Log in

Toward a theory of nuclear relaxation in dielectric glasses at ultralow temperatures

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The temperature and frequency dependence of the nuclear relaxation rate in dielectric glasses is investigated. It is shown that at low and ultralow temperatures nuclear relaxation is due to an interaction between the nuclear quadrupole moment and fluctuations of the electric field created by dipole moments of two-level systems. Fluctuations of this field can be associated with the background relaxation or are due only to the dipole-dipole interaction between two-level systems. It is shown that at lower temperatures the second relaxation mechanism begins to dominate. Expressions are obtained for the temperature and frequency of crossover between different nuclear relaxation regimes. The possibility of experimental confirmation of our results is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

    Article  ADS  Google Scholar 

  2. P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972); W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).

    Google Scholar 

  3. S. Hunklinger and A. K. Raychaudhari, Prog. Inorg. Chem. 9, 267 (1986).

    Google Scholar 

  4. W. A. Phillips, Rep. Prog. Phys. 50, 1657 (1987).

    Article  ADS  Google Scholar 

  5. J. Joffrin and A. Levelut, J. Phys. (Paris) 36, 811 (1975).

    Google Scholar 

  6. J. L. Black and B. I. Halperin, Phys. Rev. B 16, 2819 (1968).

    Google Scholar 

  7. D. Osheroff, S. Rogge, and D. Natelson, Czech. J. Phys. 46, Suppl. S6, 3295 (1996).

    Google Scholar 

  8. M. V. Klein, B. Fischer, A. C. Anderson, and P. J. Anthony, Phys. Rev. B 34, 5887 (1978).

    ADS  Google Scholar 

  9. C. C. Yu, Phys. Rev. B 32, 4220 (1988).

    Google Scholar 

  10. A. L. Burin and Yu. Kagan, Zh. Éksp. Teor. Fiz. 106, 633 (1994) [JETP 79, 347 (1994)].

    Google Scholar 

  11. A. L. Burin, L. A. Maksimov, I. Ya. Polishchuk, JETP Lett. 49, 784 (1989).

    ADS  Google Scholar 

  12. A. L. Burin, Yu. Kagan, L. A. Maksimov, and I. Ya. Polishchuk, Phys. Rev. Lett. 80, 2945 (1998).

    Article  ADS  Google Scholar 

  13. B. I. White, Jr. and R. O. Pohl, Phys. Rev. Lett. 75, 4437 (1995).

    ADS  Google Scholar 

  14. S. N. Coppersmith, Phys. Rev. Lett. 67, 2315 (1991).

    Article  ADS  Google Scholar 

  15. M. Rubinstein and P. C. Taylor, Phys. Rev. B 9, 4258 (1974).

    Article  ADS  Google Scholar 

  16. O. Kanert, J. Steinert, H. Jain, and K. J. Ngai, J. Non-Cryst. Solids 131, 1001 (1991).

    Article  Google Scholar 

  17. F. Devreux and L. Malier, Phys. Rev. B 51, 11344 (1995).

  18. C. P. Slikter, Principles of Magnetic Resonance, 3rd ed. (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  19. J. Szeftel and H. Alloul, J. Non-Cryst. Solids 29, 253 (1978).

    Article  Google Scholar 

Download references

Authors

Additional information

Zh. Éksp. Teor. Fiz. 115, 2254–2262 (June 1999)

Russian Scientific Center “Kurchatov Institute”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, Y., Maksimov, L.A. & Polishchuk, I.Y. Toward a theory of nuclear relaxation in dielectric glasses at ultralow temperatures. J. Exp. Theor. Phys. 88, 1236–1240 (1999). https://doi.org/10.1134/1.558916

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558916

Keywords

Navigation