Skip to main content
Log in

Effect of the structure of solid compounds on the shape of their NMR spectra and manifestations of dynamic chaos in paramagnetic spin systems

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The shape of NMR absorption line for typical ionic crystals, molecular crystals, and glasses is studied. The proposed theory and available experimental results suggest that the shape of NMR spectra of conventional dielectric crystals (and even molecular) is the convolution of a frequency-truncated nearly-rectangle-shaped function (characteristic oscillations in free precession signals) and a Gaussian-like function. A Gaussian-like shape of the spectra of glasses with a rigid structure (no oscillations in the free precession signal) is probably associated with a random scatter of interatomic distances. The results are interpreted within the framework of the proposed theory. It is demonstrated that, at least for solids the lattice of which contains no isolated groups of nuclei and are not quasi-one-dimensional, the structure only weakly affects the shape of the spectrum, which in turn is associated with the onset of dynamic chaos in the spin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).

    Article  CAS  Google Scholar 

  2. A. Abragam, Principles of Nuclear Magnetism, International Series of Monographs on Physics (Clarendon, Oxford, 1983).

    Google Scholar 

  3. P. W. Anderson, Phys. Rev. 82, 342 (1951).

    CAS  Google Scholar 

  4. R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).

    Article  CAS  Google Scholar 

  5. I. J. Lowe and R. Norberg, Phys. Rev. 157, 46 (1957).

    Article  Google Scholar 

  6. V. O. Zavel’sky and E. I. Fedin, Zh. Strukt. Khim. 14, 58 (1972).

    Google Scholar 

  7. V. O. Zavel’sky and E. I. Fedin, in Proceedings of the 11th European Congress on Molecular Spectroscopy, Tallinn, 1973, p. 292.

    Google Scholar 

  8. A. A. Lundin and B. N. Provotorov, Sov. Phys. JETP 43, 1149 (1976).

    Google Scholar 

  9. N. V. Zavarnitskii and I. S. Solodovnikov, J. Exp. Theor. Phys. 87, 546 (1998).

    Article  Google Scholar 

  10. V. E. Zobov, M. A. Popov, Yu. N. Ivanov, and A. I. Lifshits, J. Exp. Theor. Phys. 88, 157 (1999).

    Article  CAS  Google Scholar 

  11. K. Lefman, B. Buras, E. J. Pedersen, et al., Phys. Rev. B 50, 15623 (1995).

    Article  Google Scholar 

  12. J. Jensen, Phys. Rev. B 52, 9611 (1995).

    Article  CAS  Google Scholar 

  13. E. G. Sorte, B. V. Fine, and B. Saam, Phys. Rev. B 83, 064302 (2011).

    Article  Google Scholar 

  14. C. M. Sanchez, P. R. Levstein, R. A. Acosta, and A. K. Chattah, Phys. Rev. A 80, 012328 (2009).

    Article  Google Scholar 

  15. B. Meier, J. Kohlrautz, and J. Haase, Phys. Rev. Lett. 108, 177602 (2012).

    Article  Google Scholar 

  16. S. W. Morgan, V. Oganesyan, and G. S. Boutis, Phys. Rev. B 86, 214410 (2012).

    Article  Google Scholar 

  17. P. Gaspard, Lecture Notes for the International Summer School on Fundamental Problems in Statistical Physics XI (Leuven, Belgium, 2005). arxiv: cond-matter, 2006

    Google Scholar 

  18. P. Gaspard, in Proceedings of the Symposium of Henri Poincare, Ed. by P. Gaspard, M. Henneaux, and F. Lambert (Int. Solvay Inst. for Phys. and Chem., Brussels, 2007), p. 97.

  19. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge Univ. Press, Cambridge, 1998).

    Book  Google Scholar 

  20. D. Ruelle, Phys. Rev. Lett. 56, 405 (1986).

    Article  Google Scholar 

  21. V. E. Zobov and A. A. Lundin, J. Exp. Theor. Phys. 103, 904 (2006).

    Article  CAS  Google Scholar 

  22. G. A. Alvarez and D. Suter, Phys. Rev. Lett. 104, 230403 (2010).

    Article  Google Scholar 

  23. S. I. Doronin, E. B. Fel’dman, and F. I. Zenchuk, J. Chem. Phys. 134, 034102 (2011).

    Article  CAS  Google Scholar 

  24. F. Lado, J. D. Memory, and G. W. Parker, Phys. Rev. B 4, 1406 (1971).

    Article  Google Scholar 

  25. V. L. Bodneva and A. A. Lundin, J. Exp. Theor. Phys. 108, 992 (2009).

    Article  CAS  Google Scholar 

  26. M. Munovitz and A. Pines, Adv. Chem. Phys. 6, 1 (1987).

    Google Scholar 

  27. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of NMR in One and Two Dimensions (Mir, Moscow, 1990; Clarendon, Oxford, 1987).

    Google Scholar 

  28. A. A. Lundin, J. Exp. Theor. Phys. 83, 759 (1996).

    Google Scholar 

  29. M. A. Lavrent’ev and B. V. Shabat, Methods of Complex Variable Function Theory (Nauka, Moscow, 1987), Chap. 7 [in Russian].

    Google Scholar 

  30. A. A. Lundin and A. V. Makarenko, Sov. Phys. JETP 60, 570 (1984).

    Google Scholar 

  31. A. A. Lundin, Sov. Phys. JETP 75, 187 (1992).

    Google Scholar 

  32. M. Engelsberg and I. J. Lowe, Phys. Rev. B 12, 3547 (1975).

    Article  CAS  Google Scholar 

  33. V. D. Fedotov and N. A. Abdrashitova, Vysokomol. Soedin. A 22, 624 (1980).

    CAS  Google Scholar 

  34. R. E. Fornes, G. W. Parker, and I. D. Memory, Phys. Rev. B 1, 4228 (1970).

    Article  Google Scholar 

  35. B. T. Gravely and I. D. Memory, Phys. Rev. B 3, 3426 (1971).

    Article  Google Scholar 

  36. D. Metzger and J. Gaines, Phys. Rev. 142, 644 (1966).

    Article  Google Scholar 

  37. A. I. Kitaigorodskii, Molecular Crystals (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  38. S. Hayashi, J. Mater. Chem. 7, 1043 (1997).

    Article  CAS  Google Scholar 

  39. V. O. Zavelsky, N. I. Bezmen, and V. A. Zharikov, J. Non-Cryst. Solids 224, 225 (1998).

    Article  CAS  Google Scholar 

  40. B. C. Schmidt, T. Riemer, S. C. Kohn, H. Behrens, and R. Dupree, Geochim. Cosmochim. Acta 64, 513 (2000).

    Article  CAS  Google Scholar 

  41. V. O. Zavelsky and T. P. Salova, Geochem. Int. 39, 748 (2010).

    Google Scholar 

  42. V. O. Zavelsky, T. P. Salova, M. B. Epelbaum, N. I. Bezmen, and L. N. Zavelskaya, Phys. Chem. Glasses 41, 182 (2000).

    CAS  Google Scholar 

  43. V. O. Zavel’sky, T. P. Salova, A. A. Lundin, and N. I. Bezmen, Russ. J. Phys. Chem. A 78, 602 (2004).

    Google Scholar 

  44. W. van der Lugt and W. J. Caspers, Phys. Rev. 30, 1658 (1964).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Zavel’skii.

Additional information

Original Russian Text © V.O. Zavel’skii, A.A. Lundin, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 5, pp. 6–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavel’skii, V.O., Lundin, A.A. Effect of the structure of solid compounds on the shape of their NMR spectra and manifestations of dynamic chaos in paramagnetic spin systems. Russ. J. Phys. Chem. B 10, 379–387 (2016). https://doi.org/10.1134/S1990793116030118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116030118

Keywords

Navigation