Skip to main content
Log in

Structure and evolution of shock waves in relativistic magnetohydrodynamics

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We derive the existence conditions for relativistic shock waves propagating in a perfectly conducting fluid with a general equation of state that guarantees that the stationary wave has a continuous profile in the presence of weak viscosity. To this end we study the one-dimensional solutions of the magnetohydrodynamic equations with a relativistic viscosity tensor. We allow for anomalous regions of thermodynamic variables and do not use the well-known condition for the convexity of Poisson adiabats. The results lead to relationships among the velocities of magnetoacoustic, Alfvén, and shock waves in front of and behind the discontinuity that prove to be more stringent than the corollaries of the evolution conditions. In the nonrelativistic case and in parallel and perpendicular shock waves, any difference between the two conditions disappears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Hydrodynamics [in Russian], Pergamon Press, Oxford (1986).

    Google Scholar 

  2. A. I. Akhiezer, G. Ya. Lyubarskii, and R. V. Polovin, Zh. Éksp. Teor. Fiz. 35, 731 (1958) [Sov. Phys. JETP 8, 507 (1959)].

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1984).

    Google Scholar 

  4. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  5. A. A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics, W. A. Benjamin, New York (1967).

    Google Scholar 

  6. N. R. Sibgatullin, Oscillations and Waves in Strong Gravitational and Electromagnetic Fields [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  7. L. Van Hove, Z. Phys. C 21, 93 (1983).

    Article  Google Scholar 

  8. H. W. Barz, L. P. Csernai, B. Kampfer, and B. Lukács, Phys. Rev. D 32, 115 (1985).

    Article  ADS  Google Scholar 

  9. P. Danielewicz and P. V. Ruuskanen, Phys. Rev. D 35, 344 (1987).

    Article  ADS  Google Scholar 

  10. J. P. Blaizot and J. Y. Ollitrault, Phys. Rev. D 36, 916 (1987).

    Article  ADS  Google Scholar 

  11. K. A. Bugaev, M. I. Gorenstein, and V. I. Zhdanov, Z. Phys. C 39, 365 (1988).

    Article  Google Scholar 

  12. K. A. Bugaev, M. I. Gorenshtein, and V. I. Zhdanov, Teor. Mat. Fiz. 80, 138 (1989).

    MathSciNet  Google Scholar 

  13. A. G. Kulikovskii and G. A. Lyubimov, Prikl. Mat. Mekh. 25, 125 (1961).

    Google Scholar 

  14. R. Menikoff and B. J. Plohr, Rev. Mod. Phys. 61, 75 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  15. N. N. Kuznetsov, Zh. Éksp. Teor. Fiz. 88, 470 (1985) [Sov. Phys. JETP 61, 275 (1985)].

    ADS  Google Scholar 

  16. V. I. Zhdanov and P. V. Titarenko, Nonlin. Math. Phys. 4, 214 (1997).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 114, 881–891 (September 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhdanov, V.I., Titarenko, P.V. Structure and evolution of shock waves in relativistic magnetohydrodynamics. J. Exp. Theor. Phys. 87, 478–483 (1998). https://doi.org/10.1134/1.558684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558684

Keywords

Navigation