Skip to main content
Log in

On the Structure of Magnetohydrodynamics Shock Waves in Viscous van der Waals gases

  • SCIENTIFIC RESEARCH PAPER
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

An analytical model has been developed to explore the structure of one-dimensional viscous shock waves in the presence of an axial magnetic field assuming the gaseous medium to follow the van der Waals equation of state. The exact solutions for pressure, temperature, fluid velocity and entropy are obtained taking into account the dissipative processes in the shock transition region. The detailed analysis of the structure of shock-front has been presented showing the dependence of the thickness of shock-front on the adiabatic index, the strength of magnetic field, coefficient of viscosity, shock strength and the non-idealness parameter of the gases. The findings are presented in graphical as well as in tabular forms which reveal that the shock-front thickness increases with increasing the strength of magnetic field and the viscous coefficient of gases, whereas it decreases with the increasing value of non-idealness parameter of the gases. Finally, a comparison has been done between the current findings following the van der Waals equation of state and the previously available data following the Anisomov and Spiner equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data generated or analyzed during this study are included in this published article.

References

  1. WJM Rankine 1870 On the thermodynamic theory of waves of finite longitudinal disturbance Philos Trans R Soc Lond 160 277 288

    ADS  Google Scholar 

  2. GI Taylor 1910 The conditions necessary for discontinuous motion in gases Proc R Soc Lond A 84 371 377

    Article  ADS  Google Scholar 

  3. L Rayleigh 1910 Aerial plane waves of finite amplitude R Soc Lond A 84 247 284

    Article  ADS  Google Scholar 

  4. R Becker 1922 Impact waves and detonation Z Phys 8 321

    Article  ADS  CAS  Google Scholar 

  5. LH Thomas 1944 Note on becker's theory of the shock front J Chem Phys 12 449

    Article  ADS  CAS  Google Scholar 

  6. V Mises 1950 On the thickness of a steady shock wave J Aeronaut Sci 17 551

    Article  MathSciNet  Google Scholar 

  7. WA Gustafson 1960 On the boltzmann equation and the structure of shock waves Phys Fluids 3 732

    Article  ADS  MathSciNet  Google Scholar 

  8. M Singh A Patel R Bajargaan 2019 Travelling wave solution of a Riemann problem and Shock structure in an unsteady flow of a perfect gas under viscosity Int J Heat Technol 37 909 917

    Article  Google Scholar 

  9. Waals van der JD (1873) Over de Continuiteit van den Gas-en Vloeistoftoestand (About the Continuity of the Gas and Fluid States) Ph. D. Thesis: University of Leiden: 638–640

  10. Waals van der JD (1967) The equation of state for gases and liquids: (Nobel Lectures Physics), 1901-1921, 254

  11. PH Roberts CC Wu 1996 Structure and stability of a spherical implosion Phys Lett A 213 59 64

    Article  ADS  CAS  Google Scholar 

  12. YB Zel’dovich YP Raizer 2002 Physics of Shock Waves and High-Temperature Phenomena Dover Publication New York 70 83

    Google Scholar 

  13. AK Evans 1996 Instability of converging shock waves and sonoluminescence Phys Rev E 54 5004 5011

    Article  ADS  CAS  Google Scholar 

  14. M Pandey VD Sharma 2009 kinematics of a shock wave of arbitrary strength in a non-ideal gas Q Appl Math 67 401 418

    Article  MathSciNet  Google Scholar 

  15. N Zhao A Mentrelli T Ruggeri M Sugiyama 2011 Admissible shock waves and shock-induced phase transitions in a van der Waals fluid Phys Fluids 23 086101

    Article  ADS  Google Scholar 

  16. RS Myong 2014 Analytical solutions of shock structure thickness and asymmetry in Navier–Stokes/Fourier framework Am Inst Aeronaut Astronaut 52 1075 1080

    Article  Google Scholar 

  17. RK Anand HC Yadav 2016 The effects of viscosity on the structure of shock waves in a non-ideal gas Acta Phys Pol A 129 28 34

    Article  ADS  CAS  Google Scholar 

  18. RK Anand 2017 On the RH relations across weak and strong shocks in van der Waals gases Geophys Astrophys Fluid Dyn 111 394 409

    Article  ADS  MathSciNet  Google Scholar 

  19. A Patel M Singh 2019 Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity Shock Waves 29 427 439

    Article  ADS  Google Scholar 

  20. A Chauhan R Arora A Tomar 2020 Converging shock waves in a van der Waals gas of variable density Q J Mech Appl Math 73 101 118

    Article  MathSciNet  Google Scholar 

  21. D Khapra A Patel 2020 Shock wave structure in non-ideal dilute gas under variable prandtl number Shock Waves 30 585 602

    Article  ADS  Google Scholar 

  22. RK Anand 2013 Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects Phys Scr 87 065404

    Article  ADS  CAS  Google Scholar 

  23. RK Anand 2013 Shock dynamics of strong imploding cylindrical and spherical shock waves with non-ideal gas effects Wave Motion 50 1003 1015

    Article  ADS  MathSciNet  Google Scholar 

  24. K Pandey PP Pathak 2017 Investigation of shock waves in non-ideal gas under the action of magnetic field Adv Pure Math 7 583 596

    Article  Google Scholar 

  25. Y Tao WD Liu XQ Fan YL Zhao 2017 Structural characteristics of the shock-induced boundary layer separation extended to the leading edge Phys Fluids 29 071701

    Article  ADS  Google Scholar 

  26. R Arora VD Sharma 2006 Convergence of strong shocks in a van der Waals gas J Appl Math 66 1825 1837

    MathSciNet  Google Scholar 

  27. W Marshall 1955 The structure of Magneto-Hydrodynamic shock waves Proc R Soc Lond A 233 367 376

    Article  ADS  MathSciNet  Google Scholar 

  28. MA Liberman AL Velikovich 1982 Physics of ionizing shock waves in magnetic fields Phys Rep 84 1 84

    Article  ADS  Google Scholar 

  29. H Freistuhler Y Trakhinin 2008 On the viscous and inviscid stability of magnetohydrodynamic shock waves Phys D: Nonlinear Phenom 237 3030 3037

    Article  ADS  MathSciNet  Google Scholar 

  30. RK Anand 2013 Jump relations for Magnetohydrodynamic shock waves in non-ideal gas flow Astrophys Space Sci 343 713 733

    Article  ADS  Google Scholar 

  31. A Ramu N Dunna DK Sathpathi 2016 Numerical study of shock waves in non-ideal Magnetogasdynamics (MHD) J Egypt Math Soc 24 116 124

    Article  MathSciNet  Google Scholar 

  32. RK Anand HC Yadav 2014 On the structure of MHD shock waves in a viscous non-ideal gas Theor Comput Fluid Dyn 28 369 376

    Article  CAS  Google Scholar 

  33. N Molevich D Riashchikov 2021 Shock wave structures in an isentropically unstable heat-releasing gas Phys Fluids 33 076110

    Article  ADS  CAS  Google Scholar 

  34. S Kosuge K Aoki T Goto 2016 Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation American Institute of Physics 1786 180004

    Google Scholar 

  35. S Taniguchi T Arima T Ruggeri M Sugiyama 2014 Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas Phys Fluids 26 016103

    Article  ADS  Google Scholar 

  36. T Nath RK Gupta LP Singh 2017 Evolution of weak shock waves in non-ideal magnetogasdynamics Acta Astronaut 133 397 402

    Article  ADS  Google Scholar 

  37. K Sharma R Arora 2021 Similarity solutions for strong shock waves in non-ideal magnetogasdynamics under the effect of monochromatic radiation Phys Fluids 33 077109

    Article  ADS  CAS  Google Scholar 

  38. RS Jadhav A Agrawal 2021 Shock structures using the oburnett equations in combination with the holian conjecture Fluids 6 427

    Article  ADS  CAS  Google Scholar 

  39. VP Fomichev MA Yadrenkin 2017 The structure of a hypersonic air flow near a plane surface at various intensities of magnetogasdynamic interaction Tech Phys Lett 43 1063 1066

    Article  ADS  CAS  Google Scholar 

  40. FC Dias F Sharipov 2021 The structure of shock waves propagating through heavy noble gases: temperature dependence Shock Waves 31 609 617

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors Sewa Singh is thankful to the UGC scholarship.

Funding

The authors have not received any type of funding whether governmental or non-governmental for this scholarly work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Anand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Anand, R.K. On the Structure of Magnetohydrodynamics Shock Waves in Viscous van der Waals gases. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (2024). https://doi.org/10.1007/s40010-024-00872-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40010-024-00872-0

Keywords

Navigation