Skip to main content
Log in

Evolution of polarization in an inhomogeneous isotropic medium

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The depolarization and rotation of the polarization plane of radiation propagating in a two-dimensional graded-index medium is investigated on the basis of the quantum-mechanical method of coherent states. It is shown that the degree of polarization of both linearly and circularly polarized radiation decreases with increasing distance as a result of interaction between the polarization (spin) and the path (orbital angular momentum) of the beam. The wave nature of the depolarization is emphasized. The depolarization decreases as the radiation wavelength decreases. It is found that the degree of polarization exhibits oscillations of pure diffraction origin during the propagation of light in a single-mode optical fiber. It is shown that the rotation of the polarization plane is nonuniform in character and depends on the offset and the tilt angle of the incident-beam axis relative to the fiber axis. The Berry phase is found to undergo oscillations of a wave nature during the propagation of radiation in an inhomogeneous medium. It is shown that the spread in the angle of rotation of the polarization plane increases with distance and can be determined from measurements of the degree of polarization of the radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Tatarskii, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 10, 1762 (1967).

    Google Scholar 

  2. Yu. A. Kravtsov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 13, 281 (1970).

    Google Scholar 

  3. S. M. Rytov, Dokl. Akad. Nauk SSSR 18, 2 (1938).

    MATH  Google Scholar 

  4. A. S. McLean and J. B. Pendry, J. Mod. Opt. 42, 339 (1995).

    ADS  Google Scholar 

  5. L. G. Cohen, Bell Syst. Tech. J. 50, 23 (1971).

    Google Scholar 

  6. A. M. Smith, Appl. Opt. 17, 52 (1978).

    ADS  Google Scholar 

  7. P. Kaminov, IEEE J. Quantum Electron. QE-17, 15 (1981).

    ADS  Google Scholar 

  8. C. R. Manyuk and P. K. Wai, J. Opt. Soc. Am. B 11, 1288 (1994).

    ADS  Google Scholar 

  9. A. D. Shatrov, Radiotekh. Élektron. 26, 505 (1981).

    ADS  MathSciNet  Google Scholar 

  10. A. A. Esayan and B. Ya. Zel’dovich, Kvantovaya Élektron. 15, 235 (1988) [Sov. J. Quantum Electron. 18, 149 (1988)].

    Google Scholar 

  11. O. I. Kotov, O. L. Marusov, O. L. Nikolaev, and V. N. Filippov, Opt. Spektrosk. 70, 924 (1991) [Opt. Spectrosc. 70, 540 (1991)].

    Google Scholar 

  12. A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 936 (1986).

    ADS  Google Scholar 

  13. M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).

    ADS  MathSciNet  Google Scholar 

  14. B. Ya. Zel’dovich and N. D. Kundinova, Kvantovaya Élektron. 22, 184 (1995).

    Google Scholar 

  15. M. A. Leontovich and V. A. Fok, Zh. Éksp. Teor. Fiz. 16, 557 (1946).

    Google Scholar 

  16. D. Marcuse, Light Transmission Optics, 2nd ed., Van Nostrand Reinhold, Princeton, N.J. (1982).

    Google Scholar 

  17. J. A. Arnaud, Beam and Fiber Optics, Van Nostrand, New York (1976).

    Google Scholar 

  18. G. Eichmann, J. Opt. Soc. Am. 61, 161 (1971).

    Google Scholar 

  19. S. G. Krivoshlykov and I. N. Sisakyan, Opt. Quantum Electron. 12, 463 (1980).

    Article  ADS  Google Scholar 

  20. S. G. Krivoshlykov, N. I. Petrov, and I. N. Sisakyan, Opt. Quantum Electron. 18, 253 (1986).

    Article  Google Scholar 

  21. I. A. Malkin and V. I. Man’ko, Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  22. N. I. Petrov, J. Mod. Opt. 43, 2239 (1996).

    ADS  Google Scholar 

  23. J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics, Benjamin, New York (1968).

    Google Scholar 

  24. R. J. Glauber, Phys. Rev. 131, 2766 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  25. E. Schrödinger, Naturwissenschaften 14, 664 (1926).

    Article  MATH  Google Scholar 

  26. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland Publ. Co., Amsterdam; Elsevier North-Holland, New York (1977).

    Google Scholar 

  27. V. S. Liberman and B. Ya. Zel’dovich, Phys. Rev. A 46, 5199 (1992).

    Article  ADS  Google Scholar 

  28. V. S. Liberman and B. Ya. Zel’dovich, Pure Appl. Opt. 2, 367 (1993).

    Article  ADS  Google Scholar 

  29. D. L. Fried and G. E. Meyers, J. Opt. Soc. Am. 55, 740 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 112, 1985–2000 (December 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, N.I. Evolution of polarization in an inhomogeneous isotropic medium. J. Exp. Theor. Phys. 85, 1085–1093 (1997). https://doi.org/10.1134/1.558380

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558380

Keywords

Navigation