Skip to main content
Log in

Theory of superfluidity of nuclear matter based on the Fermi-liquid approach

  • Nuclei, Particles, and Their Interaction
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We use Landau’s concept of a Fermi liquid to study the theory of superfluidity of symmetric nuclear matter. For the nucleon-nucleon potential we take the effective Skyrme interaction (the Ska, SkM, SkM*, and RATP potentials). The density-dependence of the transition temperature is studied for different superfluid phases of nuclear matter. We show that the phase in which there is proton-nuclear pairing in the spin-triplet state is realized at densities close to the saturation density. We demonstrate that phase transitions in density from the given phase to a phase with singlet-singlet or triplet-triplet nucleon pairing are possible. The density-dependence at T=0 of the energy gap in the quasiparticle spectrum is established for the case of unitary and nonunitary spin states. Finally, we establish that the phase transition to a nonunitary phase is accompanied by the appearance of magnetization, which is found as a function of the nuclear matter density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr, B. Mottelson, D. Pines, Phys. Rev. 110, 936 (1958).

    Article  ADS  Google Scholar 

  2. S. T. Belyaev, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 31, 11 (1959).

    Google Scholar 

  3. N. N. Bogolyubov, Dokl. Akad. Nauk SSSR 119, 52 (1958) [Sov. Phys. Doklady 3, 279 (1958)].

    MATH  Google Scholar 

  4. V. G. Solov’ev, Zh. Éksp. Teor. Fiz. 35, 823 (1958) [Sov. Phys. JETP 8, 572 (1959)]; 36, 1869 (1959) [9, 1325 (1959)]; Nucl. Phys. 9, 655 (1958).

    Google Scholar 

  5. V. G. Solov’ev, Effect of Pair Correlations of the Superconducting Type on the Properties of Atomic Nuclei [in Russian], Atomizdat, Moscow (1963).

    Google Scholar 

  6. L. D. Landau, Zh. Éksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)]; 32, 59 (1957) [5, 101 (1957)].

    Google Scholar 

  7. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957); 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, Pergamon Press, New York (1965).

    Google Scholar 

  9. N. N. Bogolyubov, V. V. Tolmachev, and D. V. Shirkov, New Method in Superconductivity, Plenum Press, New York (1959).

    Google Scholar 

  10. A. B. Migdal, Theory of Finite Fermi Systems and Properties of Atomic Nuclei, Interscience, New York (1967).

    Google Scholar 

  11. V. G. Solov’ev, Theory of Atomic Nuclei, Inst. of Physics, Bristol, U.K. (1992).

    Google Scholar 

  12. Th. Alm, G. Röpke, and M. Schmidt, Z. Phys. A 337, 355 (1990).

    Google Scholar 

  13. L. Amundsen and E. Ostgaard, Nucl. Phys. A 437, 487 (1985).

    ADS  Google Scholar 

  14. R. K. Su, S. D. Yang, and T. T. S. Kuo, Phys. Rev. C 35, 1539 (1987); M. F. Jiang and T. T. S. Kuo, Nucl. Phys. A 481, 294 (1988).

    Article  ADS  Google Scholar 

  15. M. Baldo, J. Cugnon, A. Lejeune et al., Nucl. Phys. A 451, 509 (1986).

    Google Scholar 

  16. J. M. Chen, J. W. Clark, E. Krotschek et al., Nucl. Phys. A 451, 509 (1986).

    ADS  Google Scholar 

  17. R. Tamagaki, Prog. Theor. Phys. 44, 905 (1970).

    Article  ADS  Google Scholar 

  18. L. Amundsen and E. Ostgaard, Nucl. Phys. A 442, 163 (1985).

    ADS  Google Scholar 

  19. A. Sedrakian, G. Röpke, and Th. Alm, Nucl. Phys. A 594, 355 (1995).

    ADS  Google Scholar 

  20. Th. Alm, B’ L. Friman, G. Röpke et al., Nucl. Phys. A 551, 45 (1993).

    ADS  Google Scholar 

  21. Th. Alm, G. Ropke, A. Sedrakian et al., Preprint MPG-VT-UR 66/95 (1995).

  22. T. H. R. Skyrme, Nucl. Phys. 9, 615 (1959).

    MATH  Google Scholar 

  23. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972); B. I. Barts, Yu. L. Bolotin, E. V. Inopin, and V. Yu. Gonchar, The Hartree-Fock Method in Nuclear Theory [in Russian], Naukova Dumka, Kiev (1982).

    Article  ADS  Google Scholar 

  24. M. Brack, C. Guet, and H.-B. Hakansson, Phys. Rep. 123, 275 (1985).

    Article  ADS  Google Scholar 

  25. A. I. Akhiezer, V. V. Krasil’nikov, S. V. Peletminskii et al., Phys. Rep. 245, 1 (1994).

    Article  ADS  Google Scholar 

  26. V. V. Krasil’nikov, S. V. Peletminskii, and A. A. Yatsenko, Physica A 162, 513 (1990).

    ADS  MathSciNet  Google Scholar 

  27. A. I. Akhiezer, S. V. Peletminskii, and A. A. Yatsenko, Phys. Lett. A 151, 99 (1990).

    Article  ADS  Google Scholar 

  28. A. I. Akhiezer, V. V. Krasil’nikov, S. V. Peletminskii, and A. A. Yatsenko, Usp. Fiz. Nauk 163, No. 2, 1 (1993) [Phys. Usp. 36, 35 (1993)].

    Google Scholar 

  29. H. London and F. London, Proc. R. Soc. London 149, 71 (1935).

    ADS  Google Scholar 

  30. V. L. Ginzburg and L. D. Landau, Zh. Éksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  31. G. M. Éliashberg, Zh. Éksp. Teor. Fiz. 39, 1437 (1960) [Sov. Phys. JETP 12, 1000 (1961)].

    Google Scholar 

  32. L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 34, 1518 (1958) [Sov. Phys. JETP 7, 1048 (1958)].

    Google Scholar 

  33. I. A. Akhiezer and S. V. Peletminskii, Methods of Statistical Physics, Pergamon Press, Oxford (1980).

    Google Scholar 

  34. D. M. Sedrakyan and K. M. Shakhabasyan, Usp. Fiz. Nauk 161, No. 7, 3 (1991) [Sov. Phys. Usp. 34, 555 (1991)].

    Google Scholar 

  35. A. A. Isaev and S. V. Peletminskii, Ukr. Fiz. Zh. 37, 952 (1992).

    Google Scholar 

  36. M. Baldo, U. Lombardo, and P. Schuck, Phys. Rev. C 52, 975 (1995).

    Article  ADS  Google Scholar 

  37. G. Röpke, Ann. Phys. 3, 145 (1994).

    Google Scholar 

  38. K. Morawetz and D. Kremp, Z. Phys. A 351, 157 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 112, 3–24 (July 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhiezer, A.I., Isaev, A.A., Peletminskii, S.V. et al. Theory of superfluidity of nuclear matter based on the Fermi-liquid approach. J. Exp. Theor. Phys. 85, 1–12 (1997). https://doi.org/10.1134/1.558307

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558307

Keywords

Navigation