Skip to main content
Log in

Finite temperature effective field theory and two-band superfluidity in Fermi gases

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We develop a description of fermionic superfluids in terms of an effective field theory for the pairing order parameter. Our effective field theory improves on the existing Ginzburg-Landau theory for superfluid Fermi gases in that it is not restricted to temperatures close to the critical temperature. This is achieved by taking into account long-range fluctuations to all orders. The results of the present effective field theory compare well with the results obtained in the framework of the Bogoliubov-de Gennes method. The advantage of an effective field theory over Bogoliubov-de Gennes calculations is that much less computation time is required. In the second part of the paper, we extend the effective field theory to the case of a two-band superfluid. The present theory allows us to reveal the presence of two healing lengths in the two-band superfluids, to analyze the finite-temperature vortex structure in the BEC-BCS crossover, and to obtain the ground state parameters and spectra of collective excitations. For the Leggett mode our treatment provides an interpretation of the observation of this mode in two-band superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett. 3, 552 (1959)

    Article  ADS  MATH  Google Scholar 

  2. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001)

    Article  ADS  Google Scholar 

  3. A.Y. Liu, I.I. Mazin, Jens Kortus, Phys. Rev. Lett. 87, 087005 (2001)

    Article  ADS  Google Scholar 

  4. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006)

    Article  Google Scholar 

  5. V.V. Moshchalkov, M. Menghini, T. Nishio, Q.H. Chen, A.V. Silhanek, V.H. Dao, L.F. Chibotaru, N.D. Zhigadlo, J. Karpinski, Phys. Rev. Lett. 102, 117001 (2009)

    Article  ADS  Google Scholar 

  6. J. Gutierrez, B. Raes, A.V. Silhanek, L.J. Li, N.D. Zhigadlo, J. Karpinski, J. Tempere, V.V. Moshchalkov, Phys. Rev. B 85, 094511 (2012)

    Article  ADS  Google Scholar 

  7. E. Babaev, A. Sudbo, N.W. Ashcroft, Nature 431, 666 (2004)

    Article  ADS  Google Scholar 

  8. M. Iskin, C.A.R. Sá de Melo, Phys. Rev. B 72, 024512 (2005)

    Article  ADS  Google Scholar 

  9. M. Iskin, C.A.R. Sá de Melo, Phys. Rev. B 74, 144517 (2006)

    Article  ADS  Google Scholar 

  10. M. Iskin, C.A.R. Sá de Melo, Phys. Rev. Lett. 97, 100404 (2006)

    Article  ADS  Google Scholar 

  11. C.A.R. Sá de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993)

    Article  ADS  Google Scholar 

  12. K. Huang, Z.-Q. Yu, L. Yin, Phys. Rev. A 79, 053602 (2009)

    Article  ADS  Google Scholar 

  13. M.E. Zhitomirsky, V.-H. Dao, Phys. Rev. B 69, 054508 (2004)

    Article  ADS  Google Scholar 

  14. E. Babaev, M. Speight, Phys. Rev. B 72, 180502 (2005)

    Article  ADS  Google Scholar 

  15. A. Gurevich, Phys. Rev. B 67, 184515 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Babaev, J. Carlstrom, M. Speight, Phys. Rev. Lett. 105, 067003 (2010)

    Article  ADS  Google Scholar 

  17. V.G. Kogan, J. Schmalian, Phys. Rev. B 83, 054515 (2011)

    Article  ADS  Google Scholar 

  18. E. Babaev, M. Silaev, Phys. Rev. B 86, 016501 (2012)

    Article  ADS  Google Scholar 

  19. V.G. Kogan, J. Schmalian, Phys. Rev. B 86, 016502 (2012)

    Article  ADS  Google Scholar 

  20. A.A. Shanenko, M.V. Milosevic, F.M. Peeters, A.V. Vagov, Phys. Rev. Lett. 106, 047005 (2011)

    Article  ADS  Google Scholar 

  21. A. Vagov, A.A. Shanenko, M.V. Milošević, V.M. Axt, F.M. Peeters, Phys. Rev. B 86, 144514 (2012)

    Article  ADS  Google Scholar 

  22. M. Silaev, E. Babaev, Phys. Rev. B 84, 094515 (2011)

    Article  ADS  Google Scholar 

  23. M. Silaev, E. Babaev, Phys. Rev. B 85, 134514 (2012)

    Article  ADS  Google Scholar 

  24. A. Chaves, L. Komendová, M.V. Milošević, J.S. Andrade Jr., G.A. Farias, F.M. Peeters, Phys. Rev. B 83, 214523 (2011)

    Article  ADS  Google Scholar 

  25. N.V. Orlova, A.A. Shanenko, M.V. Milošević, F.M. Peeters, A.V. Vagov, V.M. Axt, Phys. Rev. B 87, 134510 (2013)

    Article  ADS  Google Scholar 

  26. L. Komendová, M.V. Milošević, A.A. Shanenko, F.M. Peeters, Phys. Rev. B 84, 064522 (2011)

    Article  ADS  Google Scholar 

  27. L. Tewordt, Phys. Rev. 132, 595 (1963)

    Article  ADS  Google Scholar 

  28. N.R. Werthammer, Phys. Rev. 132, 663 (1963)

    Article  ADS  Google Scholar 

  29. M. Marini, F. Pistolesi, G.C. Strinati, Eur. Phys. J. B 1, 151 (1998)

    Article  ADS  Google Scholar 

  30. A.M.J. Schakel, Ann. Phys. 326, 193 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. S.N. Klimin, J. Tempere, J.T. Devreese, Phys. Rev. A 90, 053613 (2014)

    Article  ADS  Google Scholar 

  32. E. Babaev, H. Kleinert, Phys. Rev. B 59, 12083 (1999)

    Article  ADS  Google Scholar 

  33. S.S. Botelho, C.A.R. Sá de Melo, Phys. Rev. Lett. 96, 040404 (2006)

    Article  ADS  Google Scholar 

  34. J.-T. Hsiang, C.-Y. Lin, D.-S. Lee, R.J. Rivers, J. Phys.: Condens. Matter 25, 404211 (2013)

    Google Scholar 

  35. E. Taylor, A. Griffin, Y. Ohashi, Phys. Rev. A 76, 023614 (2007)

    Article  ADS  Google Scholar 

  36. E. Abrahams, T. Tsuneto, Phys. Rev. 152, 416 (1966)

    Article  ADS  Google Scholar 

  37. L.P. Gorkov, G.M. Eliashberg, Zh. Eksp. Teor. Fiz. 54, 612 (1968) [Sov. Phys. J. Exp. Theor. Phys. 27, 328 (1968)]

    Google Scholar 

  38. H. Ebisawa, H. Fukuyama, Prog. Theor. Phys. 46, 1042 (1971)

    Article  ADS  Google Scholar 

  39. M. Machida, T. Koyama, Phys. Rev. A 74, 033603 (2006)

    Article  ADS  Google Scholar 

  40. Y.E. Kim, A.L. Zubarev, Phys. Rev. A 70, 033612 (2004)

    Article  ADS  Google Scholar 

  41. N. Manini, L. Salasnich, Phys. Rev. A 71, 033625 (2005)

    Article  ADS  Google Scholar 

  42. S. Simonucci, P. Pieri, G.C. Strinati, Phys. Rev. B 87, 214507 (2013)

    Article  ADS  Google Scholar 

  43. E. Taylor, A. Griffin, N. Fukushima, Y. Ohashi, Phys. Rev. A 74, 063626 (2006)

    Article  ADS  Google Scholar 

  44. J. Tempere, S.N. Klimin, J.T. Devreese, Phys. Rev. A 79, 053637 (2009)

    Article  ADS  Google Scholar 

  45. S. Simonucci, G.C. Strinati, Phys. Rev. B 89, 054511 (2014)

    Article  ADS  Google Scholar 

  46. R.B. Diener, R. Sensarma, M. Randeria, Phys. Rev. A 77, 023626 (2008)

    Article  ADS  Google Scholar 

  47. S.N. Klimin, J.T. Devreese, J. Tempere, New J. Phys. 14, 103044 (2012)

    Article  ADS  Google Scholar 

  48. L. Salasnich, P.A. Marchetti, F. Toigo, Phys. Rev. A 88, 053612 (2013)

    Article  ADS  Google Scholar 

  49. H. Kleinert, Electronic J. Theor. Phys. 8, 57 (2011)

    Google Scholar 

  50. L. Komendová, Y. Chen, A.A. Shanenko, M.V. Milosevic, F.M. Peeters, Phys. Rev. Lett. 108, 207002 (2012)

    Article  ADS  Google Scholar 

  51. F. Palestini, G.C. Strinati, Phys. Rev. B 89, 224508 (2014)

    Article  ADS  Google Scholar 

  52. A.J. Leggett, Prog. Theor. Phys. 36, 901 (1966)

    Article  ADS  Google Scholar 

  53. G. Blumberg, A. Mialitsin, B.S. Dennis, M.V. Klein, N.D. Zhigadlo, J. Karpinski, Phys. Rev. Lett. 99, 227002 (2007)

    Article  ADS  Google Scholar 

  54. Ya.G. Ponomarev et al., Solid State Commun. 129, 85 (2004)

    Article  ADS  Google Scholar 

  55. E.G. Maksimov, A.E. Karakozov, B.P. Gorshunov, Ya.G. Ponomarev, E.S. Zhukova, M. Dressel, J. Exp. Theor. Phys. 115, 252 (2012)

    Article  ADS  Google Scholar 

  56. M. Ichioka, Progr. Theor. Phys. 90, 513 (1993)

    Article  ADS  Google Scholar 

  57. S.G. Sharapov, V.P. Gusynin, H. Beck, Eur. Phys. J. B 30, 45 (2002)

    Article  ADS  Google Scholar 

  58. A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 96, 090404 (2006)

    Article  ADS  Google Scholar 

  59. E. Burovski, N. Prokof’ev, B. Svistunov, M. Troyer, Phys. Rev. Lett. 96, 160402 (2006)

    Article  ADS  Google Scholar 

  60. Y. Nishida, D.T. Son, Phys. Rev. Lett. 97, 050403 (2006)

    Article  ADS  Google Scholar 

  61. T. Enss, Phys. Rev. A 86, 013616 (2012)

    Article  ADS  Google Scholar 

  62. P. Nikolić, S. Sachdev, Phys. Rev. A 75, 033608 (2007)

    Article  ADS  Google Scholar 

  63. K.B. Gubbels, H.T.C. Stoof, Phys. Rev. Lett. 100, 140407 (2008)

    Article  ADS  Google Scholar 

  64. I. Boettcher, J.M. Pawlowski, C. Wetterich, Phys. Rev. A 89, 053630 (2014)

    Article  ADS  Google Scholar 

  65. R. Haussmann, W. Rantner, S. Cerrito, W. Zwerger, Phys. Rev. A 75, 023610 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serghei N. Klimin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimin, S.N., Tempere, J., Lombardi, G. et al. Finite temperature effective field theory and two-band superfluidity in Fermi gases. Eur. Phys. J. B 88, 122 (2015). https://doi.org/10.1140/epjb/e2015-60213-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60213-4

Keywords

Navigation