Skip to main content
Log in

DNA molecule as an elastic Heisenberg chain

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A DNA molecule is simulated by an anisotropic elastic fiber which defines the configuration of the molecule central line and is supplemented with a chain of quantum two-level systems imitating hydrogen bonds between two polynucleotide chains in the DNA double helix. The system Hamiltonian consists of Kirchhoff’s classical elastic energy and the energy of a quantum anisotropic chain of “spins” 1/2. The two-level systems and macroscopic vector variables which determine the conformation of the central line are coupled by a classical vector field q, which is introduced to take into account the existence of two polynucleotide strands. Averaging over fast (microscopic) variables yields an effective potential U(q). In the approximation of weak coupling between the systems, the spectrum of elementary excitations and effective potential U(q) have been calculated in explicit form. The relation between elementary excitations in the “magnetic” subsystem and so-called breathing modes [C. Mandel, N. R. Kallenbach, and S. W. Englander, J. Mol. Biol. 135, 391 (1980); G. Manning, Biopolymers 22, 689 (1983)] corresponding to low-frequency excitations in DNA molecules is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Mandel, N. R. Kallenbach, and S. W. Englander, J. Mol. Biol. 135, 391 (1980).

    Google Scholar 

  2. G. Manning, Biopolymers 22, 689 (1983).

    Article  Google Scholar 

  3. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson, Molecular Biology of the Cell, Garland Publishers, New York (1989).

    Google Scholar 

  4. A. V. Vologodskii, S. D. Leven, K. V. Klenin et al., Ann. Rev. Biophys. Biomol. Struct. 23, 609 (1992).

    Google Scholar 

  5. B. Fain, J. Rudnik, and S. Ostlund, E-prints Archive, Cond. Mat./96 10 126.

  6. P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University, Ithaca (1979).

    Google Scholar 

  7. T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47, R44 (1993).

    Article  ADS  Google Scholar 

  8. T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47, 684 (1993).

    Article  ADS  Google Scholar 

  9. T. Dauxois and M. Peyrard, Phys. Rev. E 51, 4027 (1995).

    Article  ADS  Google Scholar 

  10. N. L. Marky and G. S. Manning, Biopolymers 31, 1543 (1991).

    Article  Google Scholar 

  11. V. L. Golo and E. I. Kats, JETP Lett. 62, 627 (1995).

    ADS  Google Scholar 

  12. J. F. Marko and E. D. Siggia, Phys. Rev. E 52, 2912 (1995).

    ADS  MathSciNet  Google Scholar 

  13. V. L. Golo and E. I. Kats, JETP Lett. 60, 679 (1994).

    ADS  Google Scholar 

  14. G. Kirchhoff, Mechanik, Tenbnir, Berlin (1897).

    Google Scholar 

  15. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Contemporary Geometry [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, New York (1980).

    Google Scholar 

  17. K. V. Klenin, H. D. Frank-Kamenetskii, and J. Langowski, Biophys. J. 68, 81 (1995).

    Google Scholar 

  18. G. Chirico and J. Langowski, Biopolymers 34, 415 (1994).

    Article  Google Scholar 

  19. Yu. A. Izyumov and Yu. N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  20. H. Bethe, Z. Phys. 71, 205 (1931).

    ADS  MATH  Google Scholar 

  21. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  22. V. M. Agranovich, Theory of Excitons [in Russian], Nauka, Moscow (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 1833–1844 (May 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golo, V.L., Kats, E.I. DNA molecule as an elastic Heisenberg chain. J. Exp. Theor. Phys. 84, 1003–1009 (1997). https://doi.org/10.1134/1.558235

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558235

Keywords

Navigation