Skip to main content
Log in

Luminescence detection of multiphoton ionization-fragmentation of the molecular CrO 2−4 anions adsorbed on the surface of dispersed SiO2

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that luminescence detection of multiphoton ionization-fragmentation of the molecular CrO 2−4 anions adsorbed on the surface of dispersed SiO2 is possible under excitation with the fundamental frequency of a Nd:YAG pulsed laser (λ=1.064 μm). The structure and the process of formation of the adsorbed complexes under thermal activation of the surface and the nature of luminescence transitions in CrO 2−4 anions are studied in detail. It is shown that luminescence is excited as a result of the recombination of photoelectrons and ionized chromate ions. Multiphoton ionization of the ions occurs under three-photon resonance conditions. The resonance level is an antibonding state of the adsorption complex formed with the participation of an oxygen vacancy on the SiO2 surface. The dynamics of the multiphoton luminescence excitation process includes autoionization (stimulated by intercomplex electronic excitation) in superexcited states, fragmentation of chromate anions, and annealing of surface oxygen vacancies. The rate equations for three-photon-resonance multiphoton ionization are studied. The cross sections for two-and one-photon transitions on the nonresonance steps of multiphoton absorption are obtained. It is concluded that the nonlinear polarizability of the donor-acceptor adsorption bond in “chromate anion-oxygen vacancy” complexes is very important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Smith, J. H. Eberly, and J. W. Gallagher (eds.), Multiphoton Bibliography 1983–1986, NBS LP-92, Suppl. 5, 1989.

  2. M. N. R. Ashford, S. G. Clement, J. D. Howe, and C. M. Western, J. Chem. Soc. Faraday Trans. 89, 1153 (1993).

    Google Scholar 

  3. V. S. Letokhov, Laser Photoionization Spectroscopy, Academic Press, N.Y. (1987).

    Google Scholar 

  4. V. S. Letokhov, Commun. Atomic Mol. Phys. 7, 107 (1977).

    Google Scholar 

  5. V. S. Antonov, I. N. Knyazev, V. S. Letokhov et al., Opt. Lett. 3, 37 (1978).

    ADS  Google Scholar 

  6. P. Esherick and R. J. M. Anderson, Chem. Phys. Lett. 70, 621 (1980).

    Article  ADS  Google Scholar 

  7. A. S. Sudbo and M. M. T. Loy, Chem. Phys. Lett. 82, 135 (1981).

    Article  ADS  Google Scholar 

  8. Yu. D. Glinka, Zh. Prikl. Spektrosk. 57, 289 (1992).

    Google Scholar 

  9. I. Ya. Kushnirenko, Yu. D. Glinka, T. B. Krak et al., Zh. Prikl. Spektrosk. 59, 286 (1993).

    Google Scholar 

  10. Yu. D. Glinka, T. B. Krak, and Yu. N. Belyak, J. Mol. Struct. 349, 215 (1995).

    Article  Google Scholar 

  11. Yu. D. Glinka and T. B. Krak, Phys. Rev. B 52, 14985 (1995).

  12. Yu. D. Glinka and T. B. Krak, Fresenius J. Anal. Chem. 355, 647 (1996).

    Google Scholar 

  13. L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)].

    Google Scholar 

  14. V. S. Letokhov and S. K. Sekatskii, Opt. Spektrosk. 76, 303 (1994) [Opt. Spectrosc. 76, 271 (1994)].

    Google Scholar 

  15. Yu. D. Glinka and S. N. Naumenko, Izv. Ross. Akad. Nauk, Ser. Fiz., No. 12, 55 (1992).

  16. Yu. D. Glinka, S. N. Naumenko, V. M. Ogenko, and A. A. Chuiko, in Proceedings of the 4th International Conference on the Fundamentals of Absorption, Kyoto, 1992, M. Suzuki (ed.), Kodansha, Tokyo (1993), p. 217.

    Google Scholar 

  17. Yu. D. Glinka and S. N. Naumenko, in Proceedings of the 5th International Conference on the Fundamentals of Absorption, M. D. LeVan (ed.), Kluwer Academic Publishing Co., Boston (1996), p. 313.

    Google Scholar 

  18. S. E. Egorov, V. S. Letokhov, and A. N. Shibanov, in Surface Studies with Lasers, F. Aussenegg, A. Leither, and M. E. Lippisch (eds.), Springer-Verlag, N.Y. (1983), p. 156.

    Google Scholar 

  19. Yu. D. Glinka and S. N. Naumenko, Materials and Manufacturing Processes 10, 571 (1995).

    Google Scholar 

  20. S. E. Egorov, V. S. Letokhov, and A. N. Shibanov, Kvant. Élektron. 11, 1393 (1984) [Sov. J. Quantum Electron. 14, 940 (1984)].

    Google Scholar 

  21. A. A. Chuiko and Yu. I. Gorlov, The Surface Chemistry of Silicon Dioxide: Surface Structure, Active Centers, and Adsorption Mechanisms [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  22. Yu. N. Belyak, Yu. D. Glinka, S. N. Naumenko et al., Zh. Pirkl. Spektrosk. 59, 77 (1993).

    Google Scholar 

  23. M. U. Belyi, V.V. Boiko, Yu. D. Glinka et al., Izv. Akad. Nauk SSSR, ser. fizich. 53, 1778 (1989).

    Google Scholar 

  24. D. L. Griscom, J. Ceram. Soc. Jpn. 99, 923 (1991).

    Google Scholar 

  25. A. R. Silin’ and A. N. Trukhin, Point Defects and Elementary Excitations in Crystalline and Glassy SiO 2 [in Russian], Zinatne, Riga (1985).

    Google Scholar 

  26. A. J. Moulson and J. P. Roberts, J. Chem. Soc. Faraday Trans. 57, 1208 (1961).

    Google Scholar 

  27. H. Imai, K. Arai, H. Imagava, and Y. Abe, Phys. Rev. B 38, 12772 (1988).

  28. Yu. Morimoto, I. Igarashi, H. Sagahara, and S. Nasu, J. Non-Crys. Sol. 139, 35 (1992).

    Google Scholar 

  29. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, N.Y. (1968).

    Google Scholar 

  30. Yu. D. Glinka, V. Ya. Degoda, and S. N. Naumenko, J. Non-Crys. Sol. 152, 219 (1993).

    Google Scholar 

  31. G. A. M. Dalhoeven and G. Blass, Chem. Phys. Lett. 76, 27 (1980).

    Article  ADS  Google Scholar 

  32. K. K. Rebane, Impurity Spectra of Solids: Elementary Theory of Vibrational Structure, Plenum Press, N.Y. (1970).

    Google Scholar 

  33. M. U. Belyi, Yu. D. Glinka, I. Ya. Kushnirenko et al., in Abstracts of Reports at the 30th All-Union Conference on Luminescence [in Russian], Rovno (1984), p. 87.

  34. M. U. Belyi, Yu. D. Glinka, I. Ya. Kushnirenko, and V. R. Kumeskii, Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 1, 39 (1987).

  35. M. U. Belyi, Yu. D. Glinka, and I. Ya. Kushnirenko, Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 4, 41 (1988).

  36. R. M. Miller and D. S. Tinti, Mol. Phys. 56, 923 (1985).

    Google Scholar 

  37. R. M. Miller and D. S. Tinti, Chem. Phys. Lett. 130, 352 (1985).

    ADS  Google Scholar 

  38. Yu. D. Glinka, I. Ya. Kushnirenko, and G. I. Salevon, Opt. Spektrosk. 74, 153 (1993) [Opt. Spectrosc. 74, 94 (1993)].

    Google Scholar 

  39. R. M. Miller and D. S. Tinti, J. Luminescence 36, 143 (1986).

    Google Scholar 

  40. G. B. Porter, A. D. Kirk, and D. K. Sharma, J. Chem. Phys. 90, 1781 (1996).

    Google Scholar 

  41. É. S. Medvedev and V. I. Osherov, The Theory of Nonradiative Transitions in Polyatomic Molecules [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  42. K. H. Hausser and H. C. Wolf, in Advances in Magnetic Resonance, Academic Press, N.Y. (1976), Vol. 8, p. 85.

    Google Scholar 

  43. G. Herzberg, Molecular Spectra amd Molecular Structure: Electronic Spectra and Electronic Structure of Polyatomic Molecules, Krieger, N.Y. (1991).

    Google Scholar 

  44. M. A. El-Sayed, in Excited States, E. C. Lim (ed.), Academic Press, N.Y. (1974), Vol. 1, p. 35.

    Google Scholar 

  45. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford (1970).

    Google Scholar 

  46. R. J. Bell, Rep. Prog. Phys. 35, 1315 (1972).

    Article  ADS  Google Scholar 

  47. V. I. Sugakov, Fiz. Tverd. Tela (Leningrad) 19, 1877 (1977) [Sov. Phys. Solid State 19, 1099 (1977)].

    Google Scholar 

  48. V. I. Sugakov, Izv. Akad. Nauk SSSR 47, 1389 (1983).

    Google Scholar 

  49. V. I. Sugakov and Yu. D. Shtepa, Phys. Stat. Sol. B 116, 633 (1983).

    Google Scholar 

  50. Collected Scientific Papers on the Physics of Molecular Crystals [in Russian], Naukova Dumka, Kiev (1986).

  51. K. Arai, H. Imai, H. Hosono et al., Appl. Phys. Lett. 53, 1891 (1988).

    Article  ADS  Google Scholar 

  52. J. H. Stathis and M. A. Kastner, Mat. Res. Symp. Proc. 61, 161 (1986).

    Google Scholar 

  53. V. N. Bagratashvili, A. O. Rybaltovskii, and S. I. Tsypina, Spectrochim. Acta A 46, 665 (1990).

    Article  Google Scholar 

  54. D. S. Kliger (ed.), Ultrasensitive Laser Spectroscopy, Academic Press, N.Y. (1983).

    Google Scholar 

  55. É. D. Aluker, D. Yu. Lusis, and S. A. Chernov, Electronic Excitations and Radioluminescence of Alkali-Halide Crystals [in Russian], Zinatne, Riga (1979).

    Google Scholar 

  56. N. I. Koroteev and I. L. Shumai, The Physics of High-Power Laser Radiation [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  57. Y. R. Shen, The Principles of Nonlinear Optics, Wiley, N.Y. (1984).

    Google Scholar 

  58. R. K. Chang and T. E. Furtak (eds.), Surface-Enhanced Raman Scattering, Plenum Press, N.Y. (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 1748–1774 (May 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glinka, Y.D. Luminescence detection of multiphoton ionization-fragmentation of the molecular CrO 2−4 anions adsorbed on the surface of dispersed SiO2 . J. Exp. Theor. Phys. 84, 957–970 (1997). https://doi.org/10.1134/1.558234

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558234

Keywords

Navigation