Skip to main content
Log in

Influence of disorder in crystal structure on ferroelectric phase transitions

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new model of ferroelectric phase transitions in disordered crystals is developed. The model takes into account the nonequivalence of the structural environment of identical ions, which alters the balance of forces governing ferroelectric structural instability. In contrast with its predecessors, the new model can be used for qualitative and, in many cases, quantitative predictions of the temperature range of the diffuse ferroelectric phase transition and the value of the disorder-induced shift of the average transition temperature as a function of the degree of disorder and chemical composition. This conclusion is confirmed by a comparison of the theoretical results with an abundance of known experimental facts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii, V. A. Bokov, V. A. Isupov et al., Physics of Ferroelectric Phenomena [in Russian], Nauka, Leningrad (1985).

    Google Scholar 

  2. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Google Scholar 

  3. A. A. Bokov, Ferroelectrics 183, 65 (1996).

    Google Scholar 

  4. B. N. Rolov and V. É. Yurkevich, Physics of Diffuse Phase Transitions [in Russian], Izd. Rostov. Univ., Rostov-on-Don (1983).

    Google Scholar 

  5. V. P. Dudkevich, and E. G. Fesenko, Physics of Ferroelectric Films [in Russian], Izv. Rostov. Univ., Rostov-on-Don (1979).

    Google Scholar 

  6. G. Arlt, Ferroelectrics 104, 217 (1990).

    Google Scholar 

  7. F. Chu, I. M. Reaney, and N. Setter, Ferroelectrics 151, 343 (1994).

    Google Scholar 

  8. C. A. Randall, D. J. Barber, P. Groves et al., J. Mater. Sci. 23, 3678 (1988).

    Article  Google Scholar 

  9. C. A. Randall, D. J. Barber, and R. W. Whatmore, J. Meteorol. 145, 275 (1987).

    Google Scholar 

  10. S. B. Vakchrushev, B. E. Kvyatkovsky, A. A. Nabereznov et al., Physica B 156–157, 90 (1989).

    Google Scholar 

  11. S. B. Vakchrushev, B. E. Kvyatkovsky, A. A. Nabereznov et al., Ferroelectrics 90, 173 (1989).

    Google Scholar 

  12. C. N. W. Darlington, J. Phys. C 21, 3851 (1988).

    Article  ADS  Google Scholar 

  13. C. N. W. Darlington, Phys. Status Solidi A 113, 63 (1989).

    Google Scholar 

  14. G. A. Smolenskii and V. A. Isupov, Zh. Tekh. Fiz. 24, 1375 (1954).

    Google Scholar 

  15. V. A. Isupov, Ferroelectrics 90, 113 (1989).

    Google Scholar 

  16. Z.-G. Ye, Ferroelectrics 184, 193 (1996).

    Google Scholar 

  17. A. A. Bokov, Ferroelectrics 131, 49 (1992).

    Google Scholar 

  18. A. A. Bokov, Solid State Commun. 90, 687 (1994).

    Article  Google Scholar 

  19. A. A. Bokov, Izv. Ross. Akad. Nauk Ser. Fiz. 57, 25 (1993).

    Google Scholar 

  20. V. É. Yurkevich, Physics of Phase Transitions in Ferroelectrically Active Solid Solutions [in Russian] Izv. Rostov. Univ. Rostov-on-Don (1988).

  21. E. G. Fesenko, The Perovskite Family and Ferroelectricity [in Russian] Atomizdat, Moscow (1972).

    Google Scholar 

  22. V. P. Sakhnenko, E. G. Fesenko, A. T. Shuvaev et al., Kristallografiya 17, 316 (1972) [Sov. Phys. Crystallogr. 17, 268 (1972)].

    Google Scholar 

  23. M. E. Lines, Phys. Rev. 177, 797 (1969).

    ADS  Google Scholar 

  24. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1977).

    Google Scholar 

  25. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  26. A. A. Bokov, Fiz. Tverd. Tela (St. Petersburg) 36, 36 (1994) [Phys. Solid State 36, 19 (1994)].

    Google Scholar 

  27. H. Braeter, N. M. Plakida, and W. Windsch, Solid State Commun. 67, 1219 (1988).

    Article  Google Scholar 

  28. C. G. F. Stenger, F. L. Scholten, and F. J. Burggraaf, Solid State Commun. 32, 989 (1979).

    Article  Google Scholar 

  29. N. Setter and L. E. Cross, J. Appl. Phys. 51, 4356 (1980).

    Article  ADS  Google Scholar 

  30. G. S. Zhdanov, Physics of the Solid State [in Russian], Izd. MGU, Moscow (1962), p. 349.

    Google Scholar 

  31. V. V. Kirilov and V. A. Isupov, Izv. Akad. Nauk Ser. Fiz. 35, 2602 (1971).

    Google Scholar 

  32. N. Yasuda and Y. Ueda, Phys. Lett. 134, 501 (1989).

    Google Scholar 

  33. V. Yu. Shonov, Dissertation for the Degree of Candidate of Physicomathematical Sciences [in Russian], Rostov. Gos. Univ. Rostov-on-Don (1992).

    Google Scholar 

  34. N. Yasuda, S. Fujimoto, and H. Terasawa, Trans. IEEE Ultrason. Ferroelectr. Freq. Control UFFC-36, 402 (1989).

    Google Scholar 

  35. M. Yu. Leshchenko, Author’s Abstract of Dissertation for the Degree of Candidate of Physicomathematical Sciences [in Russian], Uzhgorod. Univ. Uzhgorod (1993).

    Google Scholar 

  36. C. G. F. Stenger, and A. J. Burggraaf, Phys. Status Solidi A 61, 653 (1980).

    Google Scholar 

  37. N. Setter and L. E. Cross, Phys. Status Solidi A 61, K71 (1980).

    Google Scholar 

  38. P. Groves, Ferroelectrics 76, 81 (1987).

    Google Scholar 

  39. S. Nomura, J. Kuwata, S. J. Jang et al., Mater. Res. Bull. 14, 769 (1979).

    Article  Google Scholar 

  40. N. Yasuda, S. Fujimoto, and K. J. Tanaka, J. Phys. D 18, 1909 (1985).

    ADS  Google Scholar 

  41. V. A. Isupov, Fiz. Tverd. Tela (Leningrad) 28, 2235 (1986) [Sov. Phys. Solid State 28, 1253 (1986)].

    Google Scholar 

  42. Yu. N. Venevtsev, E. D. Politova, and S. A. Ivanov, Ferroelectrics and Antiferroelectrics of the Barium Titanate Family [in Russian], Khimiya, Moscow (1985), p. 114.

    Google Scholar 

  43. G. A. Geguzina, V. P. Sakhnenko, E. G. Fesenko et al., All-Union Institute of Scientific and Technical Information (VINITI) No. 3049-76, Moscow (1976).

  44. J. Slater, Insulators, Semiconductors, and Solids, McGraw-Hill, New York (1967).

    Google Scholar 

  45. A. A. Bokov, I. P. Raevskii, and V. P. Smotrakov, Fiz. Tverd. Tela (Leningrad) 25, 2025 (1983) [Sov. Phys. Solid State 25, 1168 (1983)].

    Google Scholar 

  46. A. A. Bokov and I. P. Raevskii, Pis’ma Zh. Tekh. Fiz. 16(17), 44 (1990) [Sov. Tech. Phys. Lett. 16, 660 (1990)].

    Google Scholar 

  47. K. Z. Baba-Kishi and D. J. Batber, J. Appl. Crystallogr. 23, 43 (1990).

    Article  Google Scholar 

  48. O. I. Prokopalo and E. G. Fesenko, in Ferroelectrics [in Russian], Izd. Rostov. Gos. Univ., Rostov-on-Don (1961), p. 123.

    Google Scholar 

  49. Z. A. Takare, in Ferroelectric Phase Transitions [in Russian], Izd. Latv. Univ., Riga (1978), p. 149.

    Google Scholar 

  50. K. Ya. Borman, in Ferroelectric Phase Transitions [in Russian], Izd. Latv. Univ., Riga (1978), p. 162.

    Google Scholar 

  51. D. M. Kazarnovskii, Ferroceramic Capacitors [in Russian], Gosénergoizdat, Moscow-Leningrad (1956).

    Google Scholar 

  52. G. A. Smolesnkii, A. I. Agranovskaya, and A. M. Kalinina, Zh. Tekh. Fiz. 25, 2134 (1955).

    Google Scholar 

  53. V. Ya. Fritsberg, in Phase Transitions in Ferroelectric Solid Solutions [in Russian], Izd. Latv. Univ., Riga (1976), p. 5.

    Google Scholar 

  54. K. Tsuzuki, K. Sakat, and M. Wada, Ferroelectrics 8, 501 (1974).

    Google Scholar 

  55. G. A. Smolenskii, V. A. Bokov, V. A. Isupov et al., Ferroelectrics and Antiferroelectrics [in Russian], Nauka, Leningrad (1971).

    Google Scholar 

  56. I. P. Pronin, P. P. Syrnikov, V. A. Isupov et al., Pis’ma Zh. Tekh. Fiz. 5, 705 (1979) [Sov. Tech. Phys. Lett. 5, 289 (1979)].

    Google Scholar 

  57. S. M. Emel’yanov, I. P. Raevskii, and O. I. Prokopalo, Fiz. Tverd. Tela (Leningrad) 25, 1542 (1983) [Sov. Phys. Solid State 25, 889 (1983)].

    Google Scholar 

  58. V. Ya. Gritsberg and K. Ya. Borman, in Phase Transitions in Ferroelectrics with a Perovskite Structure [in Russian], Uch. Zap. Latv. Gos. Univ. 189, 99 (1974).

    Google Scholar 

  59. V. V. Lemanov, E. P. Smirnova, and E. A. Tarakanov, Fiz. Tverd. Tela (St. Petersburg) 37, 1854 (1995) [Phys. Solid State 37, 1010, (1995)].

    Google Scholar 

  60. S. W. Choi, T. R. Shrout, S. J. Jang et al., Mater. Lett. 8, 253 (1989).

    Article  Google Scholar 

  61. C. A. Randall, A. S. Bhalla, T. R. Shrout et al., J. Mater. Res. 5, 829 (1990).

    ADS  Google Scholar 

  62. J. Kuwata, K. Uchino, and S. Nomura, Jpn. J. Appl. Phys. 21, 1298 (1982).

    Article  Google Scholar 

  63. A. A. Bokov, L. E. Shpak, and I. P. Rayevsky, J. Phys. Chem. Solids 54, 495 (1983).

    Google Scholar 

  64. F. Chu, I. M. Reaney, and N. Setter, J. Am. Ceram. Soc. 78, 1947 (1995).

    Google Scholar 

  65. Z. Surowiak, E. Nogas, A. M. Margolin et al., Ferroelectrics 115, 21 (1991).

    Google Scholar 

  66. Z. Surowiak, D. Czekaj, A. A. Bakirov et al., Integr. Ferroelectr. 8, 267 (1995).

    Google Scholar 

  67. K. G. Abdulvakhidov and M. F. Kupriyanov, Izv. Ross. Akad. Nauk Ser. Fiz. 59, 73 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 1817–1832 (May 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokov, A.A. Influence of disorder in crystal structure on ferroelectric phase transitions. J. Exp. Theor. Phys. 84, 994–1002 (1997). https://doi.org/10.1134/1.558191

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558191

Keywords

Navigation