Skip to main content
Log in

Effect of hydrostatic pressure on the kinetics of the ordering of ferroelectrics upon second-order phase transitions

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of hydrostatic pressure on the kinetics of the formation of electrical domains in ferroelectric materials that undergo second-order phase transitions has been considered. It has been shown using the example of triglycine sulfate ferroelectric crystals undergoing an order-disorder phase transition that the applied pressure increases the ordering temperature and thus accelerates the ordering process. It has been found that, by increasing the hydrostatic pressure applied to the sample after quenching, it is possible to obtain a single-domain state, instead of the multi-domain type of ordering. The evolution curves for the average value of the order parameter and its dispersion have been obtained by numerical integration. These curves indicate that quasi-stationary multi-domain structures of the asymmetric type can be formed at specially selected pressures. It has been established that the kinetics of the formation of electrical domains in ferroelectrics depends significantly on the initial relaxation conditions, which are determined by the technological prehistory of the quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Sinyakov, S. A. Flerova, and O. A. Kubyshkin, Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 1768 (1967).

    Google Scholar 

  2. M. Koralewski, B. Noheda, G. Lifante, and J. A. Gonzalo, Solid State Commun. 85, 783 (1993).

    Article  ADS  Google Scholar 

  3. M. Koralewski, J. Stankowska, T. Iglesias, and J. A. Gonzalo, J. Phys.: Condens. Matter 8, 4079 (1996).

    ADS  Google Scholar 

  4. M. Hayashi, J. Phys. Soc. Jpn. 24, 1561 (1973).

    Article  ADS  Google Scholar 

  5. K. Gesi, K. Ozawa, and Y. Takagi, J. Phys. Soc. Jpn. 20, 1773 (1965).

    Article  ADS  Google Scholar 

  6. S. Kudo and J. Ikeda, J. Phys. Soc. Jpn. 50, 733 (1981).

    Article  ADS  Google Scholar 

  7. J. Handerek, M. Pisarski, and Z. Ujma, J. Phys. C: Solid State Phys. 14, 2007 (1981).

    Article  ADS  Google Scholar 

  8. S. G. Jabarov, D. P. Kozlenko, S. E. Kichanov, A. V. Belushkin, B. N. Savenko, R. Z. Mextieva, and C. Lathe, Phys. Solid State 53(11), 2300 (2011).

    Article  ADS  Google Scholar 

  9. J. Stankowski, A. Galelzewski, S. Waplak, U. Gruszczynska, and H. Gierszal, Ferroelectrics 6, 209 (1973).

    Article  Google Scholar 

  10. Y. Kobayashi, S. Sawada, H. Furuta, S. Endo, and K. Deguchi, J. Phys.: Condens. Matter 14, 11139 (2002).

    ADS  Google Scholar 

  11. B. Andriyevsky, W. Ciepluch-Trojanek, and A. Patryn, Condens. Matter Phys. 10, 33 (2007).

    Article  Google Scholar 

  12. L. I. Stefanovich, Low Temp. Phys. 24(9), 643 (1998).

    Article  ADS  MATH  Google Scholar 

  13. L. I. Stefanovich, Metallofiz. Noveishie Tekhnol. 21, 33 (1999).

    Google Scholar 

  14. I. S. Zheludev, Principles of Ferroelectricity (Atomizdat, Moscow, 1973) [in Russian].

    Google Scholar 

  15. L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 96, 469 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Stefanovich.

Additional information

Original Russian Text © O.Yu. Mazur, L.I. Stefanovich, V.M. Yurchenko, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 7, pp. 1358–1364.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazur, O.Y., Stefanovich, L.I. & Yurchenko, V.M. Effect of hydrostatic pressure on the kinetics of the ordering of ferroelectrics upon second-order phase transitions. Phys. Solid State 57, 1381–1387 (2015). https://doi.org/10.1134/S1063783415070227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415070227

Keywords

Navigation