Skip to main content
Log in

Localization and space-time dispersion of the kinetic coefficients of a two-dimensional disordered system

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A generalization of the Vollhardt-Wölfle self-consistent localization theory is proposed to take into account spatial dispersion of the kinetic coefficients of a two-dimensional disordered system. It is shown that the main contribution to the singular part of the collision integral of the Bethe-Salpeter equation in the limit ω→0 is from the diffusion pole =(p+p′)2 D (|p+p′|,ω), which provides an anomalous increase in the probability of backscattering p→−p′. In this limit the dependence of the diffusion coefficient on q and ω exhibits localization behavior, D(q,ω)=−iωf(l Dq), where |f(z)|⩽(0)=d 2 (d is the localization length). According to the Berezinski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)-Gor’kov criterion, D(q,0)=0 for all q. Spatial dispersion of D(q,ω) is manifested on a scale q ∝ 1/l D, where l D is the frequency-dependent diffusion length. In the localization state l Dl, where l is the electron mean free path; l Dω as ω→0, suggesting the suppression of spatial dispersion of the kinetic coefficients down to atomic scales. Under the same conditions σ(q,ω) exhibits a strong dependence on q on a scale q ∝ 1/d, i.e., the nonlocality range of the electrical conductivity is of the order of the localization length d. At the microscopic level these results corroborate the main conclusions of Suslov (Zh. Éksp. Teor. Fiz. 108, 1686 (1995) [JETP 81, 925 (1995)]), which were obtained to a certain degree phenomenologically in the limit ω→0. A major advance beyond the work of Suslov in the present study is the analysis of spatial dispersion of the kinetic coefficients at finite (rather than infinitely low) frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    ADS  Google Scholar 

  2. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed., Clarendon Press, Oxford (1979).

    Google Scholar 

  3. Y. Nagaoka and H. Fukuyama (eds.), Anderson Localization, Springer-Verlag, Berlin-New York (1982).

    Google Scholar 

  4. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  5. M. V. Sadovskii, Sverkhprovodimost’ (KIAE) 8, 337 (1995).

    Google Scholar 

  6. D. Vollhardt and P. Wolfle, Phys. Rev. B 22, 4666 (1980).

    Article  ADS  Google Scholar 

  7. D. Vollhardt and P. Wolfle, Phys. Rev. Lett. 45, 842 (1980).

    ADS  Google Scholar 

  8. P. Wölfle and D. Vollhardt, in Anderson Localization, Y. Nagaoka and H. Fukuyama (eds.), Springer-Verlag, Berlin-New York (1982), p. 26.

    Google Scholar 

  9. F. J. Wegner, Z. Phys. B. 25, 327 (1976).

    Google Scholar 

  10. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  11. D. Yoshioka, Y. Ono, and H. Fukuyama, J. Phys. Soc. Jpn. 50, 3419 (1981).

    Google Scholar 

  12. D. Yoshioka, in Anderson Localization, Y. Nagaoka and H. Fukuyama (eds.), Springer-Verlag, Berlin-New York (1982), p. 44.

    Google Scholar 

  13. A. Theumann and M. A. Pires Idiart, J. Phys. Condens. Matter 3, 3765 (1991).

    Article  ADS  Google Scholar 

  14. É. Z. Kuchinskii and M. V. Sadovskii, Sverkhprovodimost’ (KIAE) 4, 2278 (1991).

    Google Scholar 

  15. I. M. Suslov, Zh. Éksp. Teor. Fiz. 108, 1686 (1995) [JETP 81, 925 (1995)].

    Google Scholar 

  16. V. L. Berezinskii and L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 77, 2498 (1979) [Sov. Phys. JETP 50, 1209 (1979)].

    MathSciNet  Google Scholar 

  17. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  18. S. F. Edwards, Philos. Mag. 8, 1020 (1958).

    Google Scholar 

  19. D. N. Zubarev, “Modern methods of the statistical theory of nonequilibrium processes,” in Contemporary Problems in Mathematics [in Russian], Vol. 15, VINITI AN SSSR (1979).

  20. V. P. Silin, Introduction to the Kinetic Theory of Gases [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  21. W. Götze, Philos. Mag. 43, 219 (1981).

    Google Scholar 

  22. L. P. Gor’kov, A. I. Larkin, and D. E. Khmel’nitskii, JETP Lett. 30, 228 (1979).

    ADS  Google Scholar 

  23. A. A. Samarskii and A. V. Gulin, Numerical Methods [in Russian], Nauka, Moscow (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 1787–1802 (May 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groshev, A.G., Novokshonov, S.G. Localization and space-time dispersion of the kinetic coefficients of a two-dimensional disordered system. J. Exp. Theor. Phys. 84, 978–985 (1997). https://doi.org/10.1134/1.558188

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558188

Keywords

Navigation