Skip to main content
Log in

Mechanisms of low-temperature high-frequency conductivity in systems with a dense array of Ge0.7Si0.3 quantum dots in silicon

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

High-frequency (HF) conductivity in systems with a dense (with a density of n = 3 × 1011 cm−2) array of self-organized Ge0.7Si0.3 quantum dots in silicon with different boron concentrations n B is determined by acoustic methods. The measurements of the absorption coefficient and the velocity of surface acoustic waves (SAWs) with frequencies of 30–300 MHz that interact with holes localized in quantum dots are carried out in magnetic fields of up to 18 T in the temperature interval from 1 to 20 K. Using one of the samples (n B = 8.2 × 1011 cm−2), it is shown that, at temperatures T ≤ 4 K, the HF conductivity is realized by the hopping of holes between the states localized in different quantum dots and can be explained within a two-site model in the case of

, where ω is the SAW frequency and τ0 is the relaxation time of the populations of the sites (quantum dots). For T > 7 K, the HF conductivity has an activation character associated with the diffusion over the states at the mobility threshold. In the interval 4 K < T < 7 K, the HF conductivity is determined by a combination of the hopping and activation mechanisms. The contributions of these mechanisms are distinguished; it is found that the temperature dependence of the hopping HF conductivity approaches saturation at T* ≈ 4.5 K, which points to a τ0 ≤ 1. A value of τ0(T*) ≈ 5 × 10−9 s is determined from the condition ωτ0(T*) ≈ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Yakimov, A. V. Dvurechenskii, V. V. Kirienko, et al., J. Phys.: Condens. Matter 11, 9715 (1999); Phys. Rev. B 61, 10868 (2000).

    Article  ADS  Google Scholar 

  2. I. L. Drichko, A. M. Diakonov, V. I. Kozub, et al., in Proceedings of 11th International Symposium on Nanostructure: Physics and Technology (Ioffe Physicotechnical Inst., St. Petersburg, 2003), p. 133.

    Google Scholar 

  3. G. R. Nash, S. J. Bending, M. Boero, et al., Phys. Rev. B 59, 7649 (1999).

    Article  ADS  Google Scholar 

  4. A. Knäbchen, O. Entin-Vohlman, Y. M. Galperin, and Y. B. Levinson, Europhys. Lett. 39, 419 (1997).

    Article  ADS  Google Scholar 

  5. A. I. Yakimov, A. V. Dvurechenskii, G. M. Min’kov, et al., Zh. Éksp. Teor. Fiz. 127, 817 (2005) [JETP 100, 722 (2005)].

    Google Scholar 

  6. I. L. Drichko, A. M. Diakonov, I. Yu. Smirnov, et al., Phys. Rev. B 62, 7470 (2000).

    Article  ADS  Google Scholar 

  7. A. L. Efros and B. I. Shklovskii, in Electron-Electron Interactions in Disordered Systems, Ed. by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985), p. 409; Y. M. Galperin, V. L. Gurevich, and D. A. Parshin, in Hopping Transport in Solids, Ed. by B. Shklovskii and M. Pollak (Elsevier, New York, 1991), p. 453.

    Google Scholar 

  8. Yu. M. Gal’perin and É. Ya. Priev, Fiz. Tverd. Tela (Leningrad) 28, 692 (1986) [Sov. Phys. Solid State 28, 385 (1986)].

    Google Scholar 

  9. B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984), p. 416.

    Google Scholar 

  10. J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).

    Google Scholar 

  11. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and V. I. Kozub, cond-mat/0501094.

  12. M. V. Feigel’man and A. S. Ioselevich, Pis’ma Zh. Éksp. Teor. Fiz. 81, 341 (2005) [JETP Lett. 81, 277 (2005)].

    Google Scholar 

  13. V. I. Kozub, V. M. Kozhevin, D. A. Yavsin, and S. A. Gurevich, Pis’ma Zh. Éksp. Teor. Fiz. 81, 287 (2005) [JETP Lett. 81, 226 (2005)].

    Google Scholar 

  14. Yu. M. Gal’perin, I. L. Drichko, and L. B. Litvak-Gorskaya, Fiz. Tverd. Tela (Leningrad) 28, 3374 (1986) [Sov. Phys. Solid State 28, 1899 (1986)].

    Google Scholar 

  15. I. L. Drichko, A. M. D’yakonov, I. Yu. Smirnov, and A. I. Toropov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 436 (2000) [Semiconductors 34, 422 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 128, No. 6, 2005, pp. 1279–1287.

Original Russian Text Copyright © 2005 by Drichko, D’yakonov, Smirnov, Suslov, Gal’perin, Yakimov, Nikiforov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drichko, I.L., D’yakonov, A.M., Smirnov, I.Y. et al. Mechanisms of low-temperature high-frequency conductivity in systems with a dense array of Ge0.7Si0.3 quantum dots in silicon. J. Exp. Theor. Phys. 101, 1122–1129 (2005). https://doi.org/10.1134/1.2163927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2163927

Keywords

Navigation