Skip to main content
Log in

Magnetic susceptibility of quasi-one-dimensional Ising superantiferromagnets FeTAC and MCl2 · 2NC5H5 (M = Co, Fe): Approximation with L × ∞ and L × L × ∞ chain clusters

  • Order, Disorder, and Phase Transitions in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The temperature dependence of the zero-field susceptibilities of 2D and 3D Ising lattices with anisotropic coupling is analyzed. Infinite 2D and 3D lattices are approximated, respectively, by ensembles of independent L × ∞ and L × L × ∞ chain clusters that are infinitely long in the strong-coupling (J) direction. This approach is used as a basis for a quantitative description of available experimental data on the magnetic susceptibilities of the 2D anisotropic Ising ferromagnet [(CH3)3NH]FeCl3 · 2H2O (FeTAC) and the quasi-one-dimensional 3D systems CoCl2 · 2NC5H5 and FeCl2 · 2NC5H5 in the entire experimental temperature range. A method is proposed for determining the relative interchain coupling strength J′/J from the maximum susceptibility value, which improves the accuracy of estimates for J′/J by more than an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. de Jongh and A. R. Miedema, Adv. Phys. 23, 1 (1974); 50, 947 (2001).

    ADS  Google Scholar 

  2. M. Steiner, J. Villain, and C. G. Windsor, Adv. Phys. 25, 87 (1976).

    Article  ADS  Google Scholar 

  3. A. J. Guttmann and I. G. Enting, Phys. Rev. Lett. 76, 344 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  4. W. P. Orrick, B. G. Nickel, A. J. Guttmann, and J. H. H. Perk, Phys. Rev. Lett. 86, 4120 (2001); J. Stat. Phys. 102, 795 (2001).

    Article  ADS  Google Scholar 

  5. B. M. McCoy, cond-mat/0012193.

  6. S.-C. Chang and M. Suzuki, Physica A (Amsterdam) 341, 299 (2004).

    ADS  Google Scholar 

  7. R. E. Greeney, C. P. Landee, J. H. Zhang, and W. M. Reiff, Phys. Rev. B 39, 12200 (1989).

    Google Scholar 

  8. C. P. Landee, R. Kuentzler, and J. J. M. Williams, J. Appl. Phys. 67, 5604 (1990).

    Article  ADS  Google Scholar 

  9. R. S. Rubins, T. D. Black, and A. Sohn, Phys. Rev. B 49, 15366 (1994).

    Google Scholar 

  10. R. S. Rubins, A. Sohn, and T. D. Black, Phys. Rev. B 61, 11259 (2000).

    Google Scholar 

  11. K. Takeda, S. Matsukawa, and T. Haseda, J. Phys. Soc. Jpn. 30, 1330 (1971).

    Google Scholar 

  12. S. Foner and R. B. Frankel, J. Chem. Phys. 68, 4781 (1978).

    ADS  Google Scholar 

  13. L. A. Bosch, G. J. P. M. Lauwers, K. Kopinga, et al., J. Phys. C 20, 609 (1987).

    ADS  Google Scholar 

  14. M. Elmassalami and R. C. Thiel, Physica B (Amsterdam) 168, 137 (1991).

    ADS  Google Scholar 

  15. H. T. Wittveen, W. L. C. Rutten, and J. Reedijk, J. Inorg. Nucl. Chem. 37, 913 (1975).

    Google Scholar 

  16. H. J. M. de Groot, R. C. Thiel, and L. J. de Jongh, in Proceedings of International Workshop on Magnetic Excitations and Fluctuations, San Miniato, Italy, 1984, Ed. by S. W. Lovesey, U. Balucani, F. Borsa, and V. Tognetti (Springer, Berlin, 1984), p. 21.

    Google Scholar 

  17. H. J. M. de Groot, L. J. de Jongh, R. C. Thiel, and J. Reedijk, Phys. Rev. B 30, 4041 (1984).

    ADS  Google Scholar 

  18. Y. Tanaka and N. Uryû, Phys. Rev. B 21, 1994 (1980).

    Article  ADS  Google Scholar 

  19. P. Butera and M. Comi, Phys. Rev. B 65, 144431 (2002).

  20. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. E 65, 066127 (2002).

    Google Scholar 

  21. H. Arisue and T. Fujiwara, Nucl. Phys. B (Proc. Suppl.) 119, 855 (2003).

    Article  ADS  Google Scholar 

  22. F. Harbus and H. E. Stanley, Phys. Rev. B 7, 365 (1973).

    Article  ADS  Google Scholar 

  23. D. Hansel, J. M. Maillard, J. Oitmaa, and M. J. Velgakis, J. Stat. Phys. 48, 69 (1987).

    Article  MathSciNet  Google Scholar 

  24. R. Navarro and L. J. de Jongh, Physica B (Amsterdam) 94, 67 (1978).

    Google Scholar 

  25. M. E. Fisher, in Proceedings of the 1970 E. Fermi International School on Physics of Critical Phenomena, Ed. by M. S. Green (Academic, New York, 1971), Vol. 51, p. 1.

    Google Scholar 

  26. M. N. Barber, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and J. L. Lebowitz (Academic, London, 1983), Vol. 8, p. 145.

    Google Scholar 

  27. V. Privman, in Finite Size Scaling and Numerical Simulation of Statistical Systems, Ed. by V. Privman (World Sci., Singapore, 1990), p. 1.

    Google Scholar 

  28. R. J. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); R. Kubo, in Problems of Quantum Theory of Irreversible Processes, Ed. by V. L. Bonch-Bruevich (Inostrannaya Literatura, Moscow, 1961), p. 39.

    MATH  MathSciNet  Google Scholar 

  29. R. Kubo, in Thermodynamics of Irreversible Processes, Ed. by D. N. Zubarev (Inostrannaya Literatura, Moscow, 1962), p. 345 [in Russian].

    Google Scholar 

  30. M. A. Yurishchev, Fiz. Nizk. Temp. 9, 851 (1983) [Sov. J. Low Temp. Phys. 9, 442 (1983)].

    Google Scholar 

  31. M. A. Yurishchev, Phys. Rev. B 50, 13533 (1994).

    Google Scholar 

  32. F. R. Gantmakher, The Theory of Matrices, 4th ed. (Fizmatgiz, Moscow, 1988; Chelsea, New York, 1959).

    Google Scholar 

  33. M. A. Yurishchev, Phys. Rev. E 55, 3915 (1997).

    Article  ADS  Google Scholar 

  34. M. A. Yurishchev, Zh. Éksp. Teor. Fiz. 125, 1349 (2004) [JETP 98, 1183 (2004)].

    Google Scholar 

  35. M. E. Fisher, Physica (Amsterdam) 26, 618 (1960); 26, 1028 (1960).

    Article  Google Scholar 

  36. M. E. Fisher, J. Math. Phys. 4, 124 (1963).

    MATH  Google Scholar 

  37. M. Fisher, The Nature of Critical Points (Univ. of Colorado Press, Boulder, Colo., 1965; Mir, Moscow, 1968).

    Google Scholar 

  38. J. W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802 (1963).

    Article  Google Scholar 

  39. A. J. Guttmann and I. G. Enting, J. Phys. A 26, 807 (1993).

    ADS  MathSciNet  Google Scholar 

  40. M. Thomsen, Phys. Rev. B 34, 4762 (1986).

    ADS  Google Scholar 

  41. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  42. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. R. E. Greeney, C. P. Landee, W. M. Reiff, and J. H. Zhang, J. Appl. Phys. 64, 5938 (1988).

    Article  ADS  Google Scholar 

  44. J. W. Stout and R. C. Chisholm, J. Chem. Phys. 36, 979 (1962).

    Article  Google Scholar 

  45. C. J. Hamer, J. Phys. A 33, 6683 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. M. Inoue and M. Kubo, J. Magn. Res. 4, 175 (1971).

    Google Scholar 

  47. M. A. Yurishchev, Fiz. Nizk. Temp. 4, 646 (1978) [Sov. J. Low Temp. Phys. 4, 311 (1978)].

    Google Scholar 

  48. M. Evangelisti, M. L. Kahn, J. Bartolomé, et al., Phys. Rev. B 68, 184405 (2003).

    Google Scholar 

  49. S. Katsura, Phys. Rev. 127, 1508 (1962).

    Article  ADS  MATH  Google Scholar 

  50. D. C. Mattis, The Theory of Magnetism, Vol. 2: Thermodynamics and Statistical Mechanics (Springer, Berlin, 1985), Sect. 3.6.

    Google Scholar 

  51. M. A. Yurishchev, Fiz. Nizk. Temp. 6, 638 (1980) [Sov. J. Low Temp. Phys. 6, 307 (1980)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 128, No. 6, 2005, pp. 1227–1242.

Original Russian Text Copyright © 2005 by Yurishchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurishchev, M.A. Magnetic susceptibility of quasi-one-dimensional Ising superantiferromagnets FeTAC and MCl2 · 2NC5H5 (M = Co, Fe): Approximation with L × ∞ and L × L × ∞ chain clusters. J. Exp. Theor. Phys. 101, 1077–1090 (2005). https://doi.org/10.1134/1.2163923

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2163923

Keywords

Navigation