Skip to main content
Log in

Optimization of the calculations of the electronic structure of carbon nanotubes

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A method is proposed for calculating the electronic structure and physical properties (in particular, Young’s modulus) of nanotubes, including single-walled carbon nanotubes. This method explicitly accounts for the periodic boundary conditions for the geometric structure of nanotubes and makes it possible to decrease considerably (by a factor of 10–103) the time needed to calculate the electronic structure with minimum error. In essence, the proposed method consists in changing the geometry of the structure by partitioning nanotubes into sectors with the introduction of the appropriate boundary conditions. As a result, it becomes possible to reduce substantially the size of the unit cell of the nanotube in two dimensions, so that the number of atoms in a new unit cell of the modified nanotube is smaller than the number of atoms in the initial unit cell by a factor equal to an integral number. A decrease in the unit cell size and the corresponding decrease in the number of atoms provide a means for drastically reducing the computational time, which, in turn, substantially decreases with an increase in the degree of partition, especially for nanotubes with large diameters. The results of the calculations performed for carbon and non-carbon (boron nitride) nanotubes demonstrate that the electronic structures, densities of states, and Young’s moduli determined within the proposed approach differ insignificantly from those obtained by conventional computational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ijima, Nature (London) 354, 56 (1991).

    ADS  Google Scholar 

  2. P. M. Ajayan and T. W. Ebbesen, Rep. Prog. Phys. 60, 1025 (1997).

    Article  ADS  Google Scholar 

  3. S. J. Tans, A. R. M. Verschueren, and C. Dekeer, Nature (London) 393, 49 (1998).

    ADS  Google Scholar 

  4. Ph. Avouris, R. Martel, S. Heinze, M. Radosavljevec, S. Wind, V. Derycke, J. Appenzeller, and J. Terso, in Proceedings of the XVI International Winter School on Electronic Properties of Novel Materials, Kirchberg Winter School, Tyrol, Austria, 2002, Ed. by H. Kuzmany, J. Fink, M. Mehring, and S. Roth (AIP, Melville, NY, 2002).

    Google Scholar 

  5. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54(16), 11169 (1996).

    Google Scholar 

  6. D. Vanderbilt, Phys. Rev. B: Condens. Matter 41(11), y7892 (1990).

    ADS  Google Scholar 

  7. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993).

    Article  Google Scholar 

  8. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B: Condens. Matter 47(24), 16671 (1993).

    Google Scholar 

  9. G. Ya. Lyubarskii, The Application of Group Theory in Physics (GITTL, Moscow, 1957; Pergamon, New York, 1960).

    Google Scholar 

  10. C. T. White, D. H. Robertson, and J. W. Mintmire, Phys. Rev. B: Condens. Matter 47(9), 5485 (1993).

    ADS  Google Scholar 

  11. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47(1), 558 (1993).

    ADS  Google Scholar 

  12. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 49(20), 14251 (1994).

    Google Scholar 

  13. P. Hohenberg and W. Kohn, Phys. Rev. 136(3B), B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  14. W. Kohn and L. J. Sham, Phys. Rev. 140(4A), A1133 (1965).

  15. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45(14), 566 (1980).

    ADS  Google Scholar 

  16. J. P. Lu, Phys. Rev. Lett. 79(7), 1297 (1997).

    ADS  Google Scholar 

  17. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76(14), 2511 (1996).

    Article  ADS  Google Scholar 

  18. E. Hernandez, C. Goze, and P. Bernier, Appl. Phys. A: Mater. Sci. Process. 68(24), 287 (1999).

    ADS  Google Scholar 

  19. D. Srivastava, M. Menon, and K. Cho, Phys. Rev. Lett. 83(15), 2973 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 11, 2005, pp. 2106–2111.

Original Russian Text Copyright © 2005 by Fedorov, Sorokin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A.S., Sorokin, P.B. Optimization of the calculations of the electronic structure of carbon nanotubes. Phys. Solid State 47, 2196–2202 (2005). https://doi.org/10.1134/1.2131167

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2131167

Keywords

Navigation