Skip to main content
Log in

Interface phonons in semiconductor nanostructures with quantum dots

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The vibrational spectra of structures with InAs quantum dots in an AlGaAs matrix and AlAs quantum dots in an InAs matrix are investigated experimentally and theoretically. The Raman spectra exhibit features that correspond to transverse-optical (TO), longitudinal-optical (LO), and interface phonons. The frequencies of interface phonons in InAs and AlAs quantum dots and in an AlGaAs matrix with various concentrations of aluminum are calculated with the use of experimental values of transverse-and longitudinal-optical phonons in the approximation of a dielectric continuum. It is shown that the model of a dielectric continuum adequately describes the behavior of interface phonons in structures with quantum dots under the assumption that the quantum dots are spheroidal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, F. Heinrichsdorff, et al., Thin Solid Films 367, 235 (2000).

    Article  Google Scholar 

  2. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  3. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 385 (1998) [Semiconductors 32, 343 (1998)].

    Google Scholar 

  4. J. Groenen, C. Priester, and R. Carles, Phys. Rev. B 60, 16013 (1999).

    Google Scholar 

  5. H. K. Shin, D. J. Lockwood, C. Lacelle, and P. J. Poole, J. Appl. Phys. 88, 6423 (2000).

    ADS  Google Scholar 

  6. E. Martinez-Guerrero, C. Adelmann, F. Chabuel, et al., Appl. Phys. Lett. 77, 809 (2000).

    Article  ADS  Google Scholar 

  7. G. Armelles, T. Utzmeier, P. A. Postigo, et al., J. Appl. Phys. 81, 6339 (1997).

    Article  ADS  Google Scholar 

  8. Q. Xie, A. Madhukar, P. Chen, and N. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995).

    Article  ADS  Google Scholar 

  9. Z. R. Wasilewski, S. Fafard, and J. P. McCarey, J. Cryst. Growth 201–202, 1131 (1999).

    Google Scholar 

  10. D. A. Tenne, V. A. Haisler, A. K. Bakarov, et al., Phys. Status Solidi B 224, 25 (2001).

    ADS  Google Scholar 

  11. A. Milekhin, D. A. Tenne, and D. R. T. Zahn, in Quantum Dots and Nanowires, Ed. by S. Bandyopadhyay and H. S. Nalwa (Am. Sci., California, 2003), p. 375.

    Google Scholar 

  12. A. G. Milekhin, A. I. Nikiforov, O. P. Pchelyakov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 81, 33 (2005) [JETP Lett. 81, 30 (2005)].

    Google Scholar 

  13. D. A. Tenne, V. A. Haisler, A. I. Toropov, et al., Phys. Rev. B 61, 13785 (2000).

    Google Scholar 

  14. Z. C. Feng, A. A. Allerman, P. A. Barnes, and S. Perkowitz, Appl. Phys. Lett. 60, 1848 (1992).

    ADS  Google Scholar 

  15. M. I. Vasilevskiy, Phys. Rev. B 66, 195326 (2002).

    Google Scholar 

  16. A. G. Milekhin, D. A. Tenne, A. I. Toropov, et al., Phys. Status Solidi C 1, 2629 (2004).

    Google Scholar 

  17. J. Groenen, A. Mlayah, R. Carles, et al., Appl. Phys. Lett. 69, 943 (1996).

    Article  ADS  Google Scholar 

  18. A. G. Milekhin, A. I. Toropov, A. K. Bakarov, et al., Phys. Rev. B 70, 085314 (2004).

    Google Scholar 

  19. S.-Fen. Ren, Z.-Q. Gua, and D. Lub, Solid State Commun. 113, 273 (2000).

    Google Scholar 

  20. H. Fu, V. Ozolins, and A. Zunger, Phys. Rev. B 59, 2881 (1999).

    ADS  Google Scholar 

  21. Yu. A. Pusep, G. Zanelatto, S. W. da Silva, et al., Phys. Rev. B 58, R1770 (1998).

  22. R. Ruppin and R. Englman, Rep. Prog. Phys. 33, 149 (1970).

    Article  ADS  Google Scholar 

  23. E. Menendez, C. Trallero-Giner, and M. Cardona, Phys. Status Solidi B 199, 81 (1997).

    ADS  Google Scholar 

  24. N. Liu, H. K. Lyeo, C. K. Shih, et al., Appl. Phys. Lett. 80, 4345 (2002).

    ADS  Google Scholar 

  25. J. Marquez, L. Geelhaar, and K. Jacobi, Appl. Phys. Lett. 78, 2309 (2001).

    ADS  Google Scholar 

  26. D. M. Bruls, J. W. A. M. Vugs, P. M. Koenraad, et al., Appl. Phys. Lett. 81, 1708 (2002).

    Article  Google Scholar 

  27. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, et al., Phys. Rev. B 67, 125318 (2003).

    Google Scholar 

  28. A. G. Milekhin, A. I. Toropov, A. K. Bakarov, et al., Physica E (Amsterdam) 21, 241 (2004).

    ADS  Google Scholar 

  29. P. A. Knipp and T. L. Reinecke, Phys. Rev. B 46, 10310 (1992).

    Google Scholar 

  30. F. Comas, C. Trallero-Giner, N. Studart, and G. E. Marques, J. Phys.: Condens. Matter 14, 6469 (2002).

    Article  ADS  Google Scholar 

  31. M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phys. Rev. B 42, 11123 (1990).

    Google Scholar 

  32. Z. C. Feng, S. Perkowitz, D. K. Kinell, et al., Phys. Rev. B 47, 13466 (1993).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 3, 2005, pp. 645–654.

Original Russian Text Copyright © 2005 by Ladanov, Milekhin, Toropov, Bakarov, Gutakovskii, Tenne, Schulze, Zahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladanov, M.Y., Milekhin, A.G., Toropov, A.I. et al. Interface phonons in semiconductor nanostructures with quantum dots. J. Exp. Theor. Phys. 101, 554–561 (2005). https://doi.org/10.1134/1.2103225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2103225

Keywords

Navigation