Skip to main content
Log in

Interaction of optical and interface phonons and their anisotropy in GaAs/AlAs superlattices: Experiment and calculations

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Silin, Sov. Phys.—Usp. 28 (11), 972 (1985).

    Article  ADS  Google Scholar 

  2. M. A. Herman, Semiconductor Superlattices (Akademie-Verlag, Berlin, 1986; Mir, Moscow, 1989).

    Google Scholar 

  3. Light Scattering in Solids V: Superlattices and Other Microstructures, Ed. by M. Cardona and G. Guntherodt (Springer-Verlag, Berlin, 1989).

  4. A. S. Barker, Jr., J. L. Merz, and A. C. Gossard, Phys. Rev. B: Solid State 17, 3181 (1978).

    Article  ADS  Google Scholar 

  5. G. A. Sai-Halasz, A. Pinczuk, P. Y. Yu, and L. Esaki, Solid State Commun. 25, 381 (1978).

    Article  ADS  Google Scholar 

  6. B. Jusserand, D. Paquet, J. Kervarec, and A. Regreny, J. Phys. 45, C5 (1984).

    Google Scholar 

  7. C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, R. Fischer, H. Morkoc, and A. C. Gossard, Phys. Rev. B: Condens. Matter 31, 2080 (1985).

    Article  ADS  Google Scholar 

  8. M. Cardona, Superlattices Microstruct. 5, 27 (1989).

    Article  ADS  Google Scholar 

  9. A. P. Shebanin, V. A. Gaisler, T. V. Kurochkina, N. T. Moshegov, S. I. Stenin, and A. I. Toropov, JETP Lett. 49 (6), 399 (1989).

    ADS  Google Scholar 

  10. V. A. Gaisler, Doctoral Dissertation in Mathematics and Physics Novosibirsk, 1996.

    Google Scholar 

  11. N. N. Ledentsov, D. Litvinov, A. Rosenauer, D. Gerthsen, I. P. Soshnikov, V. A. Shchukin, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, V. A. Volodin, M. D. Efremov, V. V. Preobrazhenskii, B. P. Semyagin, D. Bimberg, and Zh. I. Alferov, J. Electron. Mater. 30, 463 (2001).

    Article  ADS  Google Scholar 

  12. S. M. Rytov, Sov. Phys. JETP 2, 466 (1955).

    MATH  Google Scholar 

  13. S. M. Rytov, Akust. Zh. 2, 71 (1956).

    MathSciNet  Google Scholar 

  14. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954; Inostrannaya Literatura, Moscow, 1958).

    Google Scholar 

  15. R. Tsu and S. S. Jha, Appl. Phys. Lett. 20, 16 (1972).

    Article  ADS  Google Scholar 

  16. Shang-Fen Ren, Hanyou Chu, and Yia-Chung Chang, Phys. Rev. B: Condens. Matter 37, 8899 (1988).

    Article  ADS  Google Scholar 

  17. M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, Phys. Rev. B: Condens. Matter 50, 1611 (1994).

    Article  ADS  Google Scholar 

  18. R. Merlin, C. Colvard, M. V. Klein, H. Morkoc, A. Y. Cho, and A. C. Gossard, Appl. Phys. Lett. 36, 43 (1980).

    Article  ADS  Google Scholar 

  19. D. A. Tenne, V. A. Gaisler, N. T. Moshegov, A. I. Toropov, and A. P. Shebanin, JETP Lett. 68 (1), 53 (1998).

    Article  ADS  Google Scholar 

  20. V. A. Volodin and M. P. Sinyukov, JETP Lett. 99 (7), 396 (2014).

    Article  ADS  Google Scholar 

  21. V. A. Volodin, JETP Lett. 89 (8), 419 (2009).

    Article  ADS  Google Scholar 

  22. V. A. Volodin, Phys. Solid State 53 (2), 404 (2011).

    Article  ADS  Google Scholar 

  23. V. A. Volodin, A. S. Kozhukhov, A. V. Latyshev, and D. V. Shcheglov, JETP Lett. 95 (2), 70 (2012).

    Article  ADS  Google Scholar 

  24. V. A. Volodin, M. P. Sinyukov, V. A. Sachkov, M. Stoffel, H. Rinnert, and M. Vergnat, Europhys. Lett. 105, 16003 (2014).

    Article  ADS  Google Scholar 

  25. D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990).

    ADS  Google Scholar 

  26. B. Jusserand and J. Sapriel, Phys. Rev. B: Condens. Matter 24, 7194 (1981).

    Article  ADS  Google Scholar 

  27. G. Kanellis, Phys. Rev. B: Condens. Matter 35, 746 (1987).

    Article  ADS  Google Scholar 

  28. L. Miglio and L. Colombo, Superlattices Microstruct. 7, 139 (1990).

    Article  ADS  Google Scholar 

  29. M. V. Vol’kenshtein, Dokl. Akad. Nauk SSSR XXXII, 185 (1941).

    Google Scholar 

  30. P. Castrillo, L. Colombo, and G. Armelles, Phys. Rev. B: Condens. Matter 49, 10362 (1994).

    Article  ADS  Google Scholar 

  31. V. A. Sachkov, Candidate’s Dissertation in Mathematics and Physics Omsk, 2011.

    Google Scholar 

  32. D. Litvinov, A. Rosenauer, D. Gerthsen, N. N. Ledentsov, D. Bimberg, G. A. Ljubas, V. V. Bolotov, B. R. Semyagin, and I. P. Soshnikov, Appl. Phys. Lett. 81, 1080 (2002).

    Article  ADS  Google Scholar 

  33. D. J. Lockwood, Guolin Yu, and N. L. Rowel, Solid State Commun. 136, 404 (2005).

    Article  ADS  Google Scholar 

  34. V. A. Volodin, Avtometriya 50, 68 (2014).

    Google Scholar 

  35. V. A. Volodin, M. D. Efremov, and V. A. Sachkov, J. Exp. Theor. Phys. 103 (4), 646 (2006).

    Article  ADS  Google Scholar 

  36. A. S. Barker, Jr., J. L. Merz, and A. C. Gossard, Phys. Rev. B: Solid State 17, 3181 (1978).

    Article  ADS  Google Scholar 

  37. M. D. Efremov, V. A. Volodin, V. A. Sachkov, V. V. Preobrazhenskii, B. R. Semyagin, V. V. Bolotov, E. A. Galaktionov, and A. V. Kretinin, JETP Lett. 70 (2), 75 (1999).

    Article  ADS  Google Scholar 

  38. A. Huber, T. Egeler, W. Ettmiiller, H. Rothfritz, G. Trankle, and G. Abstreiter, Superlattices and Microstructures 9, 309 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Volodin.

Additional information

Original Russian Text © V.A. Volodin, V.A. Sachkov, M.P. Sinyukov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 5, pp. 906–916.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, V.A., Sachkov, V.A. & Sinyukov, M.P. Interaction of optical and interface phonons and their anisotropy in GaAs/AlAs superlattices: Experiment and calculations. J. Exp. Theor. Phys. 120, 781–789 (2015). https://doi.org/10.1134/S1063776115040251

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115040251

Keywords

Navigation