Skip to main content
Log in

Room-temperature phase separation in weakly doped lanthanum manganites

  • Order, Disorder, and Phase Transitions in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The properties of single crystals of weakly doped lanthanum manganites La1−x AxMnO3 (A = Ca, Ce, Sr; x = 0, 0.07−0.1) have been studied in the temperature range from 77 to 400 K. It is established that these lanthanum manganites exhibit (in addition to the well-known characteristic features observed in the region of the temperature of magnetic ordering) changes in the electrical and magnetic properties in the region of room temperature (T ≈ 270–300 K), which is about two times the Curie temperature (T ≈ 120–140 K) and is far from the temperature of structural transitions in the samples studied. The results are explained in terms of phase separation related to the formation of magnetic clusters in the nonconducting medium. The phase separation is caused by a gain in the exchange energy and by the development of elastic stresses in the crystal lattice and proceeds via combination of small-radius magnetic polarons into a large-size magnetic cluster containing several charge carriers. The short-range order in the cluster appears and the phase separation begins at a temperature T ps, which is close to T C ≈ 300 K, typical of doped conducting manganites. The results of magnetic measurements show that, as the temperature decreases from 300 to 190 K, the size of superparamagnetic droplets increases from about 8 to 15 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).

    Article  ADS  Google Scholar 

  2. M. Jaime, M. B. Salamon, M. Rubinstein, et al., Phys. Rev. B 54, 11914 (1996).

  3. C. M. Varma, Phys. Rev. B 54, 7328 (1996).

    Article  ADS  Google Scholar 

  4. L. Sheng, D. Y. Xing, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett. 79, 1710 (1997).

    Article  ADS  Google Scholar 

  5. A. S. Alexandrov and A. M. Bratkovssky, Phys. Rev. Lett. 82, 141 (1999); J. Phys.: Condens. Matter 11, 1989 (1999).

    ADS  Google Scholar 

  6. R. M. Kusters, J. Singleton, D. A. Keen, et al., Physica B (Amsterdam) 155, 362 (1989).

    ADS  Google Scholar 

  7. J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, et al., Nature 386, 256 (1997).

    Article  Google Scholar 

  8. M. Hennion, F. Mussa, G. Biotteau, et al., Phys. Rev. Lett. 81, 1957 (1998).

    Article  ADS  Google Scholar 

  9. A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).

    Article  Google Scholar 

  10. Yu. A. Izyumov and Yu. I. Skryabin, Usp. Fiz. Nauk 171, 121 (2001) [Phys. Usp. 44, 109 (2001)].

    Google Scholar 

  11. M. Yu. Kagan and K. I. Kugel’, Usp. Fiz. Nauk 171, 577 (2001) [Phys. Usp. 44, 553 (2001)].

    Google Scholar 

  12. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].

    Google Scholar 

  13. É. L. Nagaev, Pis’ma Zh. Éksp. Teor. Fiz. 6, 484 (1967) [JETP Lett. 6, 18 (1967)].

    Google Scholar 

  14. M. Hennion, F. Mussa, G. Biotteau, et al., Phys. Rev. B 61, 9513 (2000).

    Article  ADS  Google Scholar 

  15. G. Biotteau, M. Hennion, F. Mussa, et al., Phys. Rev. B 64, 104421 (2001).

  16. F. Mussa, M. Hennion, G. Biotteau, et al., Phys. Rev. B 60, 12299 (1999).

  17. S. F. Dubinin, V. E. Arkhipov, S. G. Teploukhov, et al., Fiz. Tverd. Tela (St. Petersburg) 43, 2192 (2003) [Phys. Solid State 45, 2297 (2003)].

    Google Scholar 

  18. E. Dagotto, New J. Phys. 7, 67 (2005).

    Article  ADS  Google Scholar 

  19. N. I. Solin, V. V. Mashkautsan, A. V. Korolev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 77, 275 (2003) [JETP Lett. 77, 230 (2003)].

    Google Scholar 

  20. N. A. Babushkina, E. A. Chistotina, K. I. Kugel’, et al., Fiz. Tverd. Tela (St. Petersburg) 45, 480 (2003) [Phys. Solid State 45, 508 (2003)].

    Google Scholar 

  21. N. I. Solin, V. A. Kazantsev, L. D. Fal’kovskaya, and S. V. Naumov, Fiz. Tverd. Tela (St. Petersburg) 47, 1826 (2005) [Phys. Solid State 47, 1900 (2005)].

    Google Scholar 

  22. K. I. Kugel’, A. L. Rakhmanov, A. O. Sboichakov, et al., Zh. Éksp. Teor. Fiz. 125, 648 (2004) [JETP 98, 572 (2004)].

    Google Scholar 

  23. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30 (Suppl.) 1205 (1959).

    Article  Google Scholar 

  24. A. M. Balbashov, S. G. Karabashev, Ya. M. Mukovskii, et al., J. Cryst. Growth 167, 365 (1996).

    Article  Google Scholar 

  25. F. Mussa, M. Hennion, J. Rodriguez-Carvajal, et al., Phys. Rev. B 54, 15149 (1996).

    Google Scholar 

  26. A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 68, 331 (1998) [JETP Lett. 68, 356 (1998)].

    Google Scholar 

  27. L. I. Buravov and I. F. Shchegolev, Prib. Tekh. Éksp. 2, 171 (1971); N. I. Solin, S. V. Naumov, and A. A. Samokhvalov, Fiz. Tverd. Tela (St. Petersburg) 42, 899 (2000) [Phys. Solid State 42, 925 (2000)].

    Google Scholar 

  28. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979; Mir, Moscow, 1982), Chaps. 2–4, 6.

    Google Scholar 

  29. N. N. Loshkareva, Yu. P. Sukhorukov, and É. A. Neifel’d, Zh. Éksp. Teor. Fiz. 117, 440 (2000) [JETP 90, 389 (2000)].

    Google Scholar 

  30. G. Zhao, Y. S. Wang, D. J. Kang, et al., Phys. Rev. B 62, R11949 (2000).

  31. N. I. Solin and S. V. Naumov, Fiz. Tverd. Tela (St. Petersburg) 45, 460 (2003) [Phys. Solid State 45, 486 (2003)].

    Google Scholar 

  32. I. G. Austin and N. F. Mott, Adv. Phys. 18, 41 (1969).

    Article  ADS  Google Scholar 

  33. A. R. Long, Adv. Phys. 31, 553 (1982); S. R. Elliott, Adv. Phys. 36, 135 (1987).

    Article  ADS  Google Scholar 

  34. V. Yu. Ivanov, V. D. Travkin, A. A. Mukhin, et al., J. Appl. Phys. 83, 7180 (1998); A. Pimenov, Ch. Hartinger, A. Loidl, et al., Phys. Rev. B 59, 12419 (1999).

    ADS  Google Scholar 

  35. N. N. Loshkareva, A. V. Korolev, T. I. Arbuzova, et al., Fiz. Tverd. Tela (St. Petersburg) 44, 1827 (2002) [Phys. Solid State 44, 1916 (2002)].

    Google Scholar 

  36. A. Seeger, P. Lunkenheimer, J. Hemberger, et al., J. Phys.: Condens. Matter 11, 3273 (1999).

    Article  ADS  Google Scholar 

  37. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974), Chap. 23.

    Google Scholar 

  38. A. V. Korolyov, V. Ye. Arkhipov, and V. S. Gaviko, J. Magn. Magn. Mater. 213, 63 (2000); S. E. Loffland, V. Ray, P. H. Kim, et al., J. Phys.: Condens. Matter 9, L633 (1997).

    Article  ADS  Google Scholar 

  39. T. Kasuya and A. Yanase, Solid State Commun. 8, 1543 (1970).

    Google Scholar 

  40. A. O. Sboichakov, A. L. Rakhmanov, K. I. Kugel’, et al., Zh. Éksp. Teor. Fiz. 122, 869 (2002) [JETP 95, 753 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 3, 2005, pp. 623–635.

Original Russian Text Copyright © 2005 by Solin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solin, N.I. Room-temperature phase separation in weakly doped lanthanum manganites. J. Exp. Theor. Phys. 101, 535–546 (2005). https://doi.org/10.1134/1.2103223

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2103223

Keywords

Navigation