Skip to main content
Log in

Grain boundary sliding and lattice dislocation emission in nanocrystalline materials under plastic deformation

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical model is proposed to describe the physical mechanisms of hardening and softening of nanocrystalline materials during superplastic deformation. According to this model, triple interface junctions are obstacles to glide motion of grain boundary dislocations, which are carriers of grain boundary glide deformation. Transformations of an ensemble of grain boundary dislocations that occur at triple interface junctions bring about the formation of partial dislocations and the local migration of triple junctions. The energy characteristics of these transformations are considered. Pileups of partial dislocations at triple junctions cause hardening and initiate intragrain lattice sliding. When the Burgers vectors of partial dislocations reach a critical value, lattice dislocations are emitted and glide into adjacent grains, thereby smoothing the hardening effect. The local migration of triple interface junctions (caused by grain boundary sliding) and the emission of lattice dislocations bring about softening of a nanocrystalline material. The flow stress is found as a function of the total plastic strain, and the result agrees well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Padmanabhan and G. J. Davies, Superplasticity (Springer, Berlin, 1980).

    Google Scholar 

  2. I. I. Novikov and V. K. Portnoi, Superplasticity of Alloys with Ultrafine Grains (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  3. O. A. Kaibyshev, Superplasticity of Commercial Alloys (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  4. J. Pilling and N. Ridley, Superplasticity in Crystalline Solids (Inst. Metals, London, 1989).

    Google Scholar 

  5. O. A. Kaibyshev and F. Z. Utyashev, Superplasticity, Structure Refinement, and Treatment of Hardly Deformed Alloys (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  6. R. K. Islamgaliev, N. F. Yunusova, R. Z. Valiev, N. K. Tsenev, V. N. Perevezentsev, and T. G. Langdon, Scr. Mater. 49(5), 467 (2003).

    Article  Google Scholar 

  7. Z. Y. Ma, R. S. Mishra, M. W. Mahoney, and R. Grimes, Mater. Sci. Eng. A 351(1–2), 148 (2003).

    Google Scholar 

  8. V. V. Shpeizman, M. M. Myshlyaev, M. M. Kamalov, and M. M. Myshlyaeva, Fiz. Tverd. Tela (St. Petersburg) 45(11), 2008 (2003) [Phys. Solid State 45 (11), 2110 (2003)].

    Google Scholar 

  9. A. A. Mazilkin, M. M. Kamalov, and M. M. Myshlyaev, Fiz. Tverd. Tela (St. Petersburg) 46(8), 1416 (2004) [Phys. Solid State 46 (8), 1456 (2004)].

    Google Scholar 

  10. F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, Scr. Mater. 50(5), 511 (2004).

    Google Scholar 

  11. K. A. Padmanabhan and H. Gleiter, Mater. Sci. Eng. A 361(1–2), 28 (2004).

    Google Scholar 

  12. R. K. Islamgaliev, R. Z. Valiev, R. S. Mishra, and A. K. Mukherjee, Mater. Sci. Eng. A 304–306(1–2), 206 (2001).

    Google Scholar 

  13. R. S. Mishra, R. Z. Valiev, S. X. McFadden, R. K. Islamgaliev, and A. K. Mukherjee, Philos. Mag. A 81(1), 37 (2001).

    Google Scholar 

  14. R. S. Mishra, V. V. Stolyarov, C. Echer, R. Z. Valiev, and A. K. Mukherjee, Mater. Sci. Eng. A 298(1–2), 44 (2001).

    Google Scholar 

  15. A. K. Mukherjee, Mater. Sci. Eng. A 322(1–2), 1 (2002).

    Google Scholar 

  16. R. Z. Valiev and I. V. Aleksandrov, Nanostructure Materials Produced through Heavy Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  17. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain Boundary Diffusion and Properties of Nanostructure Materials (Nauka, Novosibirsk, 2001).

    Google Scholar 

  18. M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Deformed Nanostructures, Vol. 1: Hanocrystalline Materials (Yanus, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  19. M. Yu. Gutkin and I. A. Ovid’ko, Plastic Deformation in Nanocrystalline Materials (Springer, Berlin, 2004).

    Google Scholar 

  20. F. A. Mohamed and Y. Li, Mater. Sci. Eng. A 298(1–2), 1 (2001).

    Google Scholar 

  21. R. A. Masumura, P. M. Hazzledine, and C. S. Pande, Acta Mater. 46(13), 4527 (1998).

    Article  Google Scholar 

  22. H. S. Kim, Y. Estrin, and M. B. Bush, Acta Mater. 48(2), 493 (2000).

    Article  Google Scholar 

  23. V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 50(1), 61 (2002).

    Article  Google Scholar 

  24. A. A. Fedorov, M. Yu. Gutkin, and I. A. Ovid’ko, Scr. Mater. 47(1), 51 (2002).

    Article  Google Scholar 

  25. M. Murayama, J. M. Howe, H. Hidaka, and S. Takaki, Science 295(5564), 2433 (2002).

    Article  ADS  Google Scholar 

  26. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Acta Mater. 51(14), 4059 (2003).

    Article  Google Scholar 

  27. H. Hahn and K. A. Padmanabhan, Philos. Mag. B 76(4), 559 (1997).

    Google Scholar 

  28. D. A. Konstantinidis and E. C. Aifantis, Nanostruct. Mater. 10(7), 1111 (1998).

    Google Scholar 

  29. A. A. Fedorov, M. Yu. Gutkin, and I. A. Ovid’ko, Acta Mater. 51(4), 887 (2003).

    Article  Google Scholar 

  30. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, J. Phys. D: Appl. Phys. 36(12), L47 (2003).

    Article  ADS  Google Scholar 

  31. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Acta Mater. 52(6), 1711 (2004).

    Article  Google Scholar 

  32. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).

    Google Scholar 

  33. A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon, Oxford, 1995).

    Google Scholar 

  34. V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 50(20), 5005 (2002).

    Article  Google Scholar 

  35. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Fiz. Tverd. Tela (St. Petersburg) 46(11), 1975 (2004) [Phys. Solid State 46 (11), 2042 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 9, 2005, pp. 1602–1613.

Original Russian Text Copyright © 2005 by Gutkin, Ovid’ko, Skiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutkin, M.Y., Ovid’ko, I.A. & Skiba, N.V. Grain boundary sliding and lattice dislocation emission in nanocrystalline materials under plastic deformation. Phys. Solid State 47, 1662–1674 (2005). https://doi.org/10.1134/1.2045349

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045349

Keywords

Navigation