Skip to main content
Log in

Dislocation motion in plastic deformation of nano polycrystalline metal materials: a phase field crystal method study

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The evolution mechanisms of grain boundaries and dislocations, including grain morphology, grain boundary structure, and dislocation motion during plastic deformation in polycrystalline composites at low and high temperatures, are simulated by phase field crystal method. The plastic deformation of nano polycrystalline composites includes four stages: the annihilation of adjacent dislocations on grain boundaries, the absorption of grain boundary dislocations, the emission of grain boundary fold dislocations, and the annihilation of dislocations in grains. With the increase of temperature, the motion of dislocation changes from slip to climb and slip. At high-temperature \(r=-0.25\), the attraction of grain boundary to dislocation is greater than that between different dislocations. At low-temperature \(r=-0.40\), different dislocations annihilate to form new dislocation pairs, which are absorbed by the grain boundaries. This research is helpful to understand the interaction mechanism between grain boundaries and dislocations in nano polycrystalline composites, and it is proposed that the mode and rate of dislocation entering grain boundary can be controlled by temperature, so as to regulate the mechanical properties of nano polycrystalline materials.

Graphical abstract

The phase-field-crystal method is used to simulate the interactive evolution mechanism of grain boundaries and dislocations during plastic deformation of polycrystalline structure at different temperatures, including grain morphology, grain boundary structure, and dislocation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jose N, Nayra NR, Roger HB, Luiz VA, Joao NE, Joao CMC, Francisco D (2021) Kaolinite review: intercalation and production of polymer nanocomposites. Eng Sci 17:28–44. https://doi.org/10.30919/es8d499

  2. Hou H, Pan Y, Bai GN, Li YX, Murugadoss V, Zhao YH (2022) High-throughput computing for hydrogen transport properties in ε-ZrH2. Adv Compos Hybrid Ma 1–12. https://doi.org/10.1007/s42114-022-00454-x

  3. Liu CC, Xu DJ, Weng JW, Zhou SJ, Li WJ, Wan YQ, Jiang SJ, Zhou DC, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials 13:4622. https://doi.org/10.3390/ma13204622

    Article  CAS  Google Scholar 

  4. Sun Z, Qu KQ, Li JH, Yang S, Yuan BN, Huang ZH, Guo ZH (2021) Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adv Compos Hybrid Mater 4:1413–1424. https://doi.org/10.1007/s42114-021-00352-8

    Article  CAS  Google Scholar 

  5. Zhao JK, Wei DN, Zhang C, Shao Q, Murugadoss V, Guo ZH, Jiang QL, Yang XJ (2021) An overview of oxygen reduction electrocatalysts for rechargeable zinc-air batteries enabled by carbon and carbon composites. Eng Sci 15:1–19. https://doi.org/10.30919/es8d420

  6. Yan ZQ, Sun ZH, Li AR, Liu HS, Guo ZH, Qian L (2021) Three-dimensional porous flower-like S-doped Fe2O3 for superior lithium storage. Adv Compos Hybrid Mater 4:716–724. https://doi.org/10.1007/s42114-021-00301-5

    Article  CAS  Google Scholar 

  7. Cheng HR, Lu ZL, Gao QS, Zuo Y, Liu XH, Guo ZH, Liu CT, Shen CY (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16:331–340. https://doi.org/10.30919/es8d518

  8. Uplaonkar DS, Patil VN (2001) An efficient discrete wavelet transform based partial hadamard feature extraction and hybrid neural network based monarch butterfly optimization for liver tumor classification. Eng Sci 16:354–365. https://doi.org/10.30919/es8d594

  9. Choudhuri D, Gwalani B, Gorsse S, Komarasamy M, Mantri SA, Srinivasan SG, Mishra RS, Banerjee R (2019) Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds. Acta Mater 165:420–430. https://doi.org/10.1016/j.actamat.2018.12.010

    Article  CAS  Google Scholar 

  10. Xin TZ, Zhao YH, Mahjoub R, Jiang JX, Yadav A, Nomoto K, Niu RM, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu WQ, Liao XZ, Chen LQ, Hagihara K, Li XX, Ringer S, Ferry M (2021) Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Sci Adv 7:eabf3039. https://doi.org/10.1126/sciadv.abf3039

  11. Field DM, Limmer KR, Hornbuckle BC (2019) On the grain growth kinetics of a low density steel. Metals 9:997. https://doi.org/10.3390/met9090997

    Article  CAS  Google Scholar 

  12. Lu Y, Gao P (2020) Effect of heat treatment on grain growth behavior of C-276 alloy seamless tube. Heat Treat Met 45:7–11. https://doi.org/10.13251/j.issn.0254-6051.2020.02.002

    Article  CAS  Google Scholar 

  13. Senkov ON, Scott JM, Senkova SV, Meisenkothen F, Miracle DB, Woodward CF (2012) Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci 47:4062–4074. https://link.springer.com/article/10.1007/s10853-012-6260-2

  14. Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263.https://doi.org/10.1016/j.actamat.2006.01.023

  15. Gorkaya T, Molodov DA, Gottstein G (2009) Stress-driven migration of symmetrical <100> tilt grain boundaries in Al bicrystals. Acta Mater 57:5396–5405.https://doi.org/10.1016/j.actamat.2009.07.036

  16. Homer ER, Foiles SM, Holm EA, Olmsted DL (2013) Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries. Acta Mater 61:1048–1060. https://doi.org/10.1016/j.actamat.2012.10.005

    Article  CAS  Google Scholar 

  17. Glushko O, Cordill MJ (2017) The driving force governing room temperature grain coarsening in thin gold films. Scripta Mater 130:42–45. https://doi.org/10.1016/j.scriptamat.2016.11.012

    Article  CAS  Google Scholar 

  18. Sui XX, Cheng YJ, Zhou NG, Tang BB, Zhou L (2018) Molecular dynamics simulation of the solidification process of multicrystalline silicon from homogeneous nucleation to grain coarsening. CrystEngComm 20:3569–3580. https://doi.org/10.1039/C8CE00767E

    Article  CAS  Google Scholar 

  19. E JC, Wang L, Cai Y, Wu HA, Luo SN (2015) Crystallization in supercooled liquid Cu: homogeneous nucleation and growth. J Chem Phys 142:064704. https://doi.org/10.1063/1.4907627

  20. Chen Y, Kang XH, Xiao NM, Zheng CW, Li, DZ (2009) Phase field method simulation of the coarsening process of polycrystalline material grain growth. Acta Phys Sin-Ch 58:124–131. http://210.72.142.130/handle/321006/70888

  21. Luo XM, Li X, Zhang GP (2017) Forming incoherent twin boundaries: a new way for nanograin growth under cyclic loading. Mater Res Lett 5:95–101. https://doi.org/10.1080/21663831.2016.1203365

    Article  CAS  Google Scholar 

  22. Luo XM, Zhu XF, Zhang GP (2014) Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat Commun 5:3021. https://www.nature.com/articles/ncomms4021 (https://doi.org/10.1038/ncomms4021)

  23. Elder KR, Katakowski M, Haataja M, Grant M (2002) Modeling elasticity in crystal growth. Phys Rev lett 88:245701. https://doi.org/10.1103/PhysRevLett.88.245701

    Article  CAS  Google Scholar 

  24. Elder KR, Grant M (2004) Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys Rev E 70:051605. https://doi.org/10.1103/PhysRevE.70.051605

    Article  CAS  Google Scholar 

  25. Adland A, Karma A, Spatschek R, Buta D, Asta M (2013) Phase-field-crystal study of grain boundary premelting and shearing in bcc iron. Phys Rev B 87:024110.1–024110.22. https://doi.org/10.1103/PhysRevB.87.024110

  26. Hu S, Xu LP, Liu QY (2019) Simulation of shear-induced nanograin deformation: the influence of temperature and grain boundary misorientation. Mater Res Express 6:076511. https://liopscience.iop.org/article/10.1088/2053-1591ab10c4

  27. Tian XL, Zhao YH, Peng DW, Guo QW, Guo Z, Hou H (2021) Phase-field crystal simulation of evolution of liquid pools in grain boundary pre-melting regions. T Nonferr Metal SOC 31:1175–1188. https://doi.org/10.1016/S1003-6326(21)65570

    Article  CAS  Google Scholar 

  28. Guo HJ, Zhao YH, Sun YY, Tian JZ, Hou H, Qi KW, Tian XL (2019) Phase field crystal study of grain boundary structure and annihilation mechanism in low-angle grain boundary. Superlattice Microst 129:163–175. https://doi.org/10.1016/j.spmi.2019.03.020

    Article  CAS  Google Scholar 

  29. Wang XN, Zhang HB, Yan SN, Zhang YM, Tian XL, Peng DW, Zhao YH (2022) The Response Mechanism of Crystal Orientation to Grain Boundary Dislocation under Uniaxial Strain: A Phase-Field-Crystal Study. Metals 12(5):712. https://doi.org/10.3390/met12050712

    Article  CAS  Google Scholar 

  30. Qi KW, Zhao YH, Guo HJ, Tian XL, Hou H (2019) Phase field crystal simulation of  the effet of temperature on low-angle asymmetric tilt grain boundary dislocation motion. Acta Phys Sin-Ch 68(17):170504. https://doi.org/10.7498/aps.68.20190051

    Article  CAS  Google Scholar 

  31. Tian XL, Zhao YH, Gu T, Guo YL, Xu FQ, Hou H (2022) Cooperative effect of strength and ductility processed by thermomechanical treatment for Cu-Al-Ni alloy. Mat Sci Eng A 849:143485. https://doi.org/10.1016/j.msea.2022.143485

  32. Gao YJ, Huang LL, Deng QQ, Zhou WQ, Luo ZR, Lin K (2016) Phase field crystal simulation of dislocation configuration evolution in dynamic recovery in two dimensions. Acta Mater 117:238–251. https://doi.org/10.1016/j.actamat.2016.06.021

    Article  CAS  Google Scholar 

  33. Zhao YH, Liu KX, Hou H, Chen LQ (2022) Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study. Mater Design 216:110555. https://doi.org/10.1016/j.matdes.2022.110555

    Article  CAS  Google Scholar 

  34. Zhao YH (2022) Stability of phase boundary between L12-Ni3Al phases: A phase field study. Intermetallics 144:107528. https://doi.org/10.1016/j.intermet.2022.107528

    Article  CAS  Google Scholar 

  35. Zhao YH, Sun YY, Hou H (2022) Core-shell structure nano precipitates in Fe-xCu-3.0Mn-1.5Ni-1.5Al alloys: A phase field study. Prog Nat Sci-Mater 32:358–368. https://doi.org/10.1016/j.pnsc.2022.04.001

  36. Wang YZ, Li J (2010) Phase field modeling of defects and deformation. Acta Mater 58:1212–1235. https://doi.org/10.1016/j.actamat.2009.10.041

    Article  CAS  Google Scholar 

  37. Zhao YH, Zhang B, Hou H, Chen WP, Wang M (2019) Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process. J Mater Sci Technol 35:1044–1052. https://doi.org/10.1016/j.jmst.2018.12.009

    Article  Google Scholar 

  38. Kuang WW, Wang HF, Li X, Zhang JB, Zhou Q, Zhao YH (2018) Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications. Acta Mater 159:16–30. https://doi.org/10.1016/j.actamat.2018.08.008

    Article  CAS  Google Scholar 

  39. Zhang JB, Wang HF, Kuang WW, Zhang YC, Li S, Zhao YH, Herlach DM (2018) Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification. Acta Mater 148:86–99. https://doi.org/10.1016/j.actamat.2018.01.040

    Article  CAS  Google Scholar 

  40. Swift J, Hohenberg PC (1977) Hydrodynamic fluctuations at the convective instability. Phys Rev A 15:319–328

    Article  Google Scholar 

  41. Stefanovic P, Haataja M, Provatas N (2009) Phase field crystal study of deformation and plasticity in nanocrystalline materials. Phys Rev E 80:046107. https://doi.org/10.1103/PhysRevE.80.046107

    Article  CAS  Google Scholar 

  42. Cheng M, Warren JA (2008) An efficient algorithm for solving the phase field crystal model. J Comput Phys 227:6241–6248. https://doi.org/10.1016/j.jcp.2008.03.012

    Article  Google Scholar 

  43. Hirouchi T, Takaki T, Tomita Y (2009) Development of numerical scheme for phase field crystal deformation simulation. Comput Mater Sci 44:1192–1197. https://doi.org/10.1016/j.commatsci.2008.08.001

    Article  CAS  Google Scholar 

  44. Chen LQ, Zhao YH (2022) From classical thermodynamics to phase-field method. Prog Mater Sci 124:1–34. https://doi.org/10.1016/j.pmatsci.2021.100868

    Article  CAS  Google Scholar 

  45. Yue Q, Paul KE (2007) Molecular dynamics simulations of grain boundary sliding: the effect of stress and boundary misorienta-tion. Acta Mater 55(5):1555–1563. https://doi.org/10.1016/j.actamat.2006.10.016

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 52074246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, K., Zhang, H. et al. Dislocation motion in plastic deformation of nano polycrystalline metal materials: a phase field crystal method study. Adv Compos Hybrid Mater 5, 2546–2556 (2022). https://doi.org/10.1007/s42114-022-00522-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00522-2

Keywords

Navigation