Skip to main content
Log in

Causes of the stability of three-bilayer islands and steps on a Si (111) surface

  • Atomic Structure and Nonelectronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The initial stages of growth of Ge and Si layers on a singular Si (111) surface result in an unusual morphology of the growth surface if the layers are deposited at a low rate; i.e., triangular islands with a height of as much as three atomic layers are formed. A simulation based on the Monte Carlo method has been used to show that an additional barrier with a height of 0.5–0.6 eV, serving to incorporate atoms into dimerized bonds at the edges of the triangular islands, brings about enhanced growth of the islands in relation to their height and a change in the triangles’ orientation. According to the suggested hypothesis, the increase in the islands’ height and the limitation of their height to three bilayers are due to the effect of the edge dimers, whose orientation changes when the height of a step perpendicular to the \(\langle \bar 1\bar 12\rangle \) direction becomes as large as three bilayers. Scanning tunneling microscopy has been used to detect new special features in the atomic structure of regular three-bilayer steps on a Si (557) surface. The results of an analysis of the images obtained using a scanning tunneling microscope confirm the hypothesis that a row of dimers is formed at the edge of a three-bilayer step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Phys. Rev. B 68, 075409 (2003).

    Google Scholar 

  2. G. Jin, Y. S. Tang, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 74, 2471 (1999).

    ADS  Google Scholar 

  3. J. Viernow, J.-L. Lin, D. Y. Petrovykh, et al., Appl. Phys. Lett. 72, 948 (1998).

    Article  ADS  Google Scholar 

  4. J. Viernow, D. Y. Petrovykh, F.-K. Men, et al., Appl. Phys. Lett. 74, 2125 (1999).

    Article  ADS  Google Scholar 

  5. R. A. Zhachuk, S. A. Teys, A. E. Dolbak, and B. Z. Olshanetsky, Surf. Sci. 565, 37 (2004).

    Article  ADS  Google Scholar 

  6. A. Kirakosian, R. Bennewitz, J. N. Crain, et al., Appl. Phys. Lett. 79, 1608 (2001).

    Article  ADS  Google Scholar 

  7. K. Brunner, Rep. Prog. Phys. 65, 27 (2002).

    Article  ADS  Google Scholar 

  8. Zh. I. Alferov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 3 (1998) [Semiconductors 32, 1 (1998)].

    Google Scholar 

  9. S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk 168, 1083 (1998) [Phys. Usp. 41, 983 (1998)].

    Google Scholar 

  10. V. I. Trofimov and V. A. Osadchenko, Growth and Morphology of Thin Films (Énergoatomizdat, Moscow, 1993) [in Russian].

    Google Scholar 

  11. V. I. Trofimov and V. G. Mokerov, Dokl. Akad. Nauk 375, 465 (2000) [Dokl. Phys. 45, 643 (2000)].

    Google Scholar 

  12. B. Voigtlaender, Surf. Sci. Rep. 43, 127 (2001).

    Google Scholar 

  13. S. A. Teys and B. Z. Olshanetsky, Phys. Low-Dimens.Semicond. Struct., No. 1/2, 37 (2002).

  14. U. Kohler, O. Jusko, G. Pietsch, et al., Surf. Sci. 248, 321 (1991).

    Google Scholar 

  15. A. B. Talochkin and S. A. Tiis, Pis’ma Zh. Éksp. Teor. Fiz. 75, 314 (2002) [JETP Lett. 75, 264 (2002)].

    Google Scholar 

  16. D. J. Chadi, Phys. Rev. Lett. 59, 1691 (1987).

    Article  ADS  Google Scholar 

  17. Y. W. Mo, R. Kariotis, B. S. Swartzentruber, et al., J. Vac. Sci. Technol. A 8, 201 (1990).

    Article  ADS  Google Scholar 

  18. Zh. Zhang, F. Wu, H. J. Zandvliet, et al., Phys. Rev. Lett. 74, 3644 (1995).

    ADS  Google Scholar 

  19. H. Okada, Y. Fujimoto, K. Endo, et al., Phys. Rev. B 63, 195324 (2001).

  20. J. Cai and J.-S. Wang, Phys. Rev. B 64, 035402 (2001).

  21. Y. Fujikawa, K. Akiyama, T. Nagao, et al., Phys. Rev. Lett. 88, 176101 (2002).

  22. K. Takayanagi, Y. Tahishiro, S. Takahashi, and M. Takahashi, Surf. Sci. 164, 367 (1985).

    Article  Google Scholar 

  23. M. Hupalo, C. Z. Wang, B. J. Min, et al., Phys. Rev. B 67, 115333 (2003).

  24. I.-S. Hwang, Mon-Su Ho, and T. T. Tsong, Phys. Rev. Lett. 83, 120 (1999).

    ADS  Google Scholar 

  25. B. Z. Olshanetsky and A. A. Shklyaev, Surf. Sci. 82, 445 (1979).

    Article  Google Scholar 

  26. I. G. Neizvestny, N. L. Shwartz, Z. Sh. Yanovitskaya, and A. V. Zverev, Comput. Phys. Commun. 147, 272 (2002).

    ADS  Google Scholar 

  27. H. Nakahara, M. Ichikawa, and S. Stoyanov, Surf. Sci. 329, 115 (1995).

    Article  Google Scholar 

  28. L. V. Sokolov, M. A. Lamin, V. A. Markov, et al., Poverkhnost, No. 6, 53 (1991).

  29. V. Cherepanov and B. Voigtlander, Appl. Phys. Lett. 81, 4745 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 39, No. 8, 2005, pp. 1002–1011.

Original Russian Text Copyright © 2005 by Zverev, Neizvestny, Reizvikh, Romanyuk, Teys, Shwartz, Yanovitskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zverev, A.V., Neizvestny, I.G., Reizvikh, I.A. et al. Causes of the stability of three-bilayer islands and steps on a Si (111) surface. Semiconductors 39, 967–977 (2005). https://doi.org/10.1134/1.2010695

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2010695

Keywords

Navigation