Skip to main content
Log in

Multiparticle entanglement via resonant interaction between light and atomic ensembles

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Multiparticle entangled states generated via interaction between narrowband light and an ensemble of identical two-level atoms are considered. Depending on the initial photon statistics, correlation between atoms and photons can give rise to entangled states of these systems. It is found that the state of any pair of atoms interacting with weak single-mode squeezed light is inseparable and robust against decay. Optical schemes for preparing entangled states of atomic ensembles by projective measurement are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature 413, 400 (2001).

    Article  ADS  Google Scholar 

  2. C. Monroe, D. M. Meekhof, B. E. King, et al., Phys. Rev. Lett. 75, 4714 (1995).

    ADS  MathSciNet  Google Scholar 

  3. E. Hagley, X. Maître, G. Nogues, et al., Phys. Rev. Lett. 79, 1 (1997).

    Article  ADS  Google Scholar 

  4. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, Phys. Rev. Lett. 82, 1060 (1999).

    Article  ADS  Google Scholar 

  5. A. V. Burlakov, M. V. Chekhova, and O. A. Karabutova, Phys. Rev. A 60, 4209 (1999); A. V. Burlakov and M. V. Chekhova, Pis’ma Zh. Éksp. Teor. Fiz. 75, 505 (2002) [JETP Lett. 75, 432 (2002)]; A. V. Burlakov, L. A. Krivitskii, S. P. Kulik, et al., Opt. Spektrosk. 94, 743 (2003) [Opt. Spectrosc. 94, 684 (2003)]; Yu. I. Bogdanov, L. A. Krivitskii, and S. P. Kulik, Pis’ma Zh. Éksp. Teor. Fiz. 78, 804 (2003) [JETP Lett. 78, 352 (2003)]; L. A. Krivitskii, S. P. Kulik, A. N. Penin, and M. V. Chekhova, Zh. Éksp. Teor. Fiz. 124, 943 (2003) [JETP 97, 846 (2003)].

    Article  ADS  Google Scholar 

  6. W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).

  7. M. Eibl, N. Kiesel, M. Bourennane, et al., Phys. Rev. Lett. 92, 077901 (2004).

  8. F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys. Rev. A 65, 052112 (2002).

    Google Scholar 

  9. A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).

    ADS  MATH  MathSciNet  Google Scholar 

  10. A. M. Basharov, Pis’ma Zh. Éksp. Teor. Fiz. 75, 151 (2002) [JETP Lett. 75, 123 (2002)]; Zh. Éksp. Teor. Fiz. 121, 1249 (2002) [JETP 94, 1070 (2002)].

    Google Scholar 

  11. M. Plesch, J. Novotny, Z. Dzurakova, and V. Buzek, J. Phys. A: Math. Gen. 37, 1843 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  12. W. Dür, Phys. Rev. A 63, 020303 (2001).

    Google Scholar 

  13. J. K. Stockton, J. M. Geremia, A. C. Doherty, and H. Mabuchi, Phys. Rev. A 67, 022112 (2003).

    Google Scholar 

  14. V. Buzek and M. Hillery, Phys. Rev. A 54, 1844 (1996); M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, Phys. Rev. A 59, 156 (1999).

    ADS  MathSciNet  Google Scholar 

  15. J. Joo, Y.-J. Park, J. Lee, and J. Jang, quant-ph/0204003.

  16. V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, Phys. Lett. A 314, 267 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).

    Article  ADS  Google Scholar 

  18. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

    Article  ADS  Google Scholar 

  19. R. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  MATH  Google Scholar 

  20. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Cooperative Phenomena in Optics (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  21. H. Hammer, quant-ph/0407094.

  22. A. Olaya-Castro, N. F. Johnson, and L. Quiroga, Phys. Rev. A 70, 020301 (2004).

    Google Scholar 

  23. N. Gisin and S. Popescu, Phys. Rev. Lett. 83, 432 (1999).

    ADS  Google Scholar 

  24. A. M. Basharov, Method of Unitary Transformation in Nonlinear Optics (Mosk. Inzh.-Fiz. Inst., Moscow, 1990) [in Russian]; Zh. Éksp. Teor. Fiz. 102, 1126 (1992) [Sov. Phys. JETP 75, 611 (1992)].

    Google Scholar 

  25. D. V. Kupriyanov, I. M. Sokolov, and A. V. Slavgorodskii, Phys. Rev. A 63, 063811 (2001); 68, 043815 (2003).

    Google Scholar 

  26. V. N. Gorbachev, A. I. Zhiliba, A. A. Rodichkina, and A. I. Trubilko, Phys. Lett. A 323, 339 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  27. H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001); R. Raussendorf, D. E. Browne, and H. J. Briegel, quant-ph/0301052.

    Article  ADS  Google Scholar 

  28. A. M. Basharov and É. A. Manykin, Opt. Spektrosk. 96, 91 (2004) [Opt. Spectrosc. 96, 81 (2004)].

    Google Scholar 

  29. S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson, Evanston, Ill, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 1, 2005, pp. 42–53.

Original Russian Text Copyright © 2005 by Gorbachev, Trubilko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbachev, V.N., Trubilko, A.I. Multiparticle entanglement via resonant interaction between light and atomic ensembles. J. Exp. Theor. Phys. 101, 33–43 (2005). https://doi.org/10.1134/1.2010659

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2010659

Keywords

Navigation