Skip to main content
Log in

Quantification of Quantum Entanglement in a Multiparticle System of Two-Level Atoms Interacting with a Squeezed Vacuum State of the Radiation Field

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We quantify multiparticle quantum entanglement in a system of N two-level atoms interacting with a squeezed vacuum state of the electromagnetic field. We calculate the amount of quantum entanglement present among one hundred such two-level atoms and also show the variation of that entanglement with the radiation field parameter. We show the continuous variation of the amount of quantum entanglement as we continuously increase the number of atoms from N = 2 to N = 100. We also discuss that the multiparticle correlations among the N two-level atoms are made up of all possible bipartite correlations among the N atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hald, J., Sørenson, J.L., Schori, C., Polzik, E.S.: Phys. Rev. Lett. 83, 1319 (1999)

    Article  ADS  Google Scholar 

  2. Julsgaard, B., Kohzenkin, A., Polzik, E.S.: Nautre 413, 400 (2001)

    Article  Google Scholar 

  3. Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Nature 425, 937 (2003)

    Article  ADS  Google Scholar 

  4. Reid, M.D., He, Q.Y., Drummond, P.D.: Front. Phys. 7(1), 72 (2012)

    Article  Google Scholar 

  5. Meyer, D.A., Wallach, N.R.: J. Math. Phys. 43, 4273 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Plenio, M.B., Semiao, F.L.: New J. Phys. 7, 73 (2005)

    Article  ADS  Google Scholar 

  7. Deb, R.N.: Phys. Rev. A 84, 032327 (2011)

    Article  ADS  Google Scholar 

  8. Paternostro, M., Son, W., Kim, M.S.: Phys. Rev. Lett. 92, 197901 (2004)

    Article  ADS  Google Scholar 

  9. Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Horodecki, P.: Phys. Lett. A 232, 333 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  11. Sørensen, A., Duan, L.M., Cirac, J.I., Zoller, P.: Nature 409, 63 (2001)

    Article  ADS  Google Scholar 

  12. Wang, X., Sanders, B.C.: Phys. Rev. A 68, 012101 (2003)

    Article  ADS  Google Scholar 

  13. Usha Devi, A.R., Uma, M.S., Prabhu, R., Sudha: Int. J. Mod. Phys. B 20, 1917 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. Uma, M.S., Usha Devi, A.R.: arXiv:quant-ph/0809.5147

  15. Korbicz, J.K., Cirac, J.I., Lewenstein, M.: Phys. Rev. Lett. 95, 120502 (2005)

    Article  ADS  Google Scholar 

  16. Korbicz, J.K., Gühne, O., Lewenstein, M., Haeffner, H., Roos, C.F., Blatt, R.: Phys. Rev. A 74, 052319 (2006)

    Article  ADS  Google Scholar 

  17. Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Phys. Rev. A 79, 042334 (2009)

    Article  ADS  Google Scholar 

  18. Ma, J., Wang, X., Sun, C.P., Nori, F.: Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gross, C.: J. Phys. B. At. Mol. Opt. Phys. 45, 103001 (2012)

    Article  ADS  Google Scholar 

  20. Dalton, B., Heaney, L., Goold, J., Garraway, B., Reid, M.: e-print arXiv:quant-ph/1506.06892

  21. Vitagliano, G., Hyllus, P., Egusquiza, I.L., Tóth, G.: Phys. Rev. Lett. 107, 240502 (2011)

    Article  ADS  Google Scholar 

  22. Kitagawa, M., Ueda, M.: Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge U.K. (2000)

  24. Wineland, D.J., Bollinger, J.J., Itano, W.M., Heinzen, D.J.: Phys. Rev. A 50, 67 (1994)

    Article  ADS  Google Scholar 

  25. Agarwal, G.S., Puri, R.R.: Phys. Rev. A 41, 3782 (1990)

    Article  ADS  Google Scholar 

  26. Agarwal, G.S., Puri, R.R.: Phys. Rev. A 49, 4968 (1994)

    Article  ADS  Google Scholar 

  27. Sakurai, J.J.: Modern Quantum Mechanics Revised Edition (Addison-Wesley Publishing Company, Inc.)

  28. Varshalovich, D.A., Moskalev, A.N., Kheronskii, V.K.: Quantum theory of Angular Momentum (World Scientific) (1988)

  29. Deb, R.N., Nayak, N., Dutta-Roy, B.: Eur. Phys. J. D 33, 149 (2005)

    Article  ADS  Google Scholar 

  30. Felicetti, S., Sanz, M., Lamata, L., Romero, G., Johansson, G., Delsing, P., Solano, E.: Phys. Rev. Lett. 113, 093602 (2014)

    Article  ADS  Google Scholar 

  31. Clark, S.G., Parkins, A.S.: Phys. Rev. Lett. 90, 047905 (2003)

    Article  ADS  Google Scholar 

  32. Jakob, M., Abranyos, Y., Bergou, J.A.: Phys. Rev. A 66, 022113 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am grateful to late Binayak Dutta Roy and Nilakantha Nayak for useful discussions with them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Narayan Deb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, R.N. Quantification of Quantum Entanglement in a Multiparticle System of Two-Level Atoms Interacting with a Squeezed Vacuum State of the Radiation Field. Int J Theor Phys 55, 3289–3308 (2016). https://doi.org/10.1007/s10773-016-2959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-2959-1

Keywords

Navigation