Skip to main content
Log in

The transition from thermodynamically to kinetically controlled formation of quantum dots in an InAs/GaAs(100) system

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of experimental and theoretical studies of quantum dot formation in an InAs/GaAs(100) system in the case of a subcritical width of the deposited InAs layer (1.5–1.6 monolayers) are presented. It is shown that, in the subcritical range of InAs thicknesses (smaller than 1.6 monolayers), regardless of the deposition rate, the density of quantum dots increases and their size decreases in response to an increase in surface temperature. In the overcritical range of InAs thicknesses (more than 1.8 monolayers), the density of quantum dots increases and their size decreases in response to a decrease in temperature and an increase in the deposition rate. The observed behavior of quantum dot morphology is attributed to the transition from a thermodynamically to kinetically controlled regime of quantum dot formation near the critical thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zh. I. Alferov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 3 (1998) [Semiconductors 32, 1 (1998)].

    Google Scholar 

  2. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  3. V. M. Ustinov, A. E. Zhukov, A. Y. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  4. G. E. Tsyrlin, N. P. Korneeva, V. N. Demidov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 31, 1230 (1997) [Semiconductors 31, 1057 (1997)].

    Google Scholar 

  5. J. M. Moison, F. Houzay, F. Batthe, et al., Appl. Phys. Lett. 64, 196 (1994).

    Article  ADS  Google Scholar 

  6. I. Mukhametzhanov, Z. Wei, R. Heitz, and A. Madhukar, Appl. Phys. Lett. 75, 85 (1999).

    Article  ADS  Google Scholar 

  7. Ch. Heyn, Phys. Rev. B 64, 165306 (2001).

  8. A. Polimeni, A. Patane, M. Cappizi, et al., Phys. Rev. B 53, R4213 (1996).

  9. I. Daruka and A.-L. Barabasi, Phys. Rev. Lett. 79, 3708 (1997).

    Article  ADS  Google Scholar 

  10. M. Meixner, E. Schöll, V. A. Shchukin, and D. Bimberg, Phys. Rev. Lett. 87, 236101 (2001).

    Google Scholar 

  11. A. A. Tonkikh, G. E. Cirlin, V. G. Dubrovskii, et al., Pis’ma Zh. Tekh. Fiz. 29(16), 72 (2003) [Tech. Phys. Lett. 29, 691 (2003)].

    Google Scholar 

  12. V. G. Dubrovskii, G. E. Cirlin, Yu. G. Musikhin, et al., J. Cryst. Growth 267, 47 (2004).

    Article  Google Scholar 

  13. V. G. Dubrovskii, A. A. Tonkikh, G. E. Cirlin, et al., Pis’ma Zh. Tekh. Fiz. 30(21), 72 (2004) [Tech. Phys. Lett. 30, 920 (2004)].

    Google Scholar 

  14. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Phys. Rev. B 68, 075409 (2003).

    Google Scholar 

  15. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Phys. Status Solidi B 241, R42 (2004).

    ADS  Google Scholar 

  16. A. V. Osipov, F. Schmitt, S. A. Kukushkin, and P. Hess, Appl. Surf. Sci. 188, 156 (2002).

    Article  Google Scholar 

  17. P. Müller and R. Kern, Appl. Surf. Sci. 102, 6 (1996).

    Google Scholar 

  18. F. M. Kuni and A. P. Grinin, Kolloidn. Zh. 46, 23 (1984).

    Google Scholar 

  19. A. V. Osipov, S. A. Kukushkin, F. Schmitt, and P. Hess, Phys. Rev. B 64, 205421 (2001).

    Google Scholar 

  20. V. G. Dubrovskii, J. Phys.: Condens. Matter 16, 6929 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 39, No. 7, 2005, pp. 853–858.

Original Russian Text Copyright © 2005 by Musikhin, Cirlin, Dubrovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Samsonenko, Tonkikh, Bert, Ustinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musikhin, Y.G., Cirlin, G.E., Dubrovskii, V.G. et al. The transition from thermodynamically to kinetically controlled formation of quantum dots in an InAs/GaAs(100) system. Semiconductors 39, 820–825 (2005). https://doi.org/10.1134/1.1992641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1992641

Keywords

Navigation